Extension of mappings into spheres and countable decompositions of Tikhonov cubes
Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 117-136
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study several extension problems for maps into spheres, and as a consequence we solve a problem by P. S. Aleksandrov on bicompact condensation. Furthermore, we define
a new class of infinite-dimensional spaces, and in investigating them we generalize a classical result of Uryson on Cantor manifolds.
Bibliography: 15 titles.
@article{SM_1971_13_1_a5,
author = {N. Hadzhiivanov},
title = {Extension of mappings into spheres and countable decompositions of {Tikhonov} cubes},
journal = {Sbornik. Mathematics},
pages = {117--136},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1971_13_1_a5/}
}
N. Hadzhiivanov. Extension of mappings into spheres and countable decompositions of Tikhonov cubes. Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 117-136. http://geodesic.mathdoc.fr/item/SM_1971_13_1_a5/