A universal property of Deheuvels homology
Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 65-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a construction leading to Deheuvels homology of compact metric spaces with coefficients in copresheaves of abelian groups. We construct an epimorphic map of Deheuvels homology onto Aleksandrov–Čech homology, whose kernel is expressed in terms of the derived functors of the inverse limit functor. We consider projective objects in the category of copresheaves of abelian groups and homology with coefficients in projective copresheaves. The fundamental result of the paper is the theorem that the Deheuvels homology of compact metric spaces with coefficients in copresheaves of abelian groups is a universal extension of Aleksandrov–Čech homology among homologies which satisfy the exactness condition and other natural requirements. Bibliography: 5 titles.
@article{SM_1971_13_1_a3,
     author = {E. M. Beniaminov},
     title = {A~universal property of {Deheuvels} homology},
     journal = {Sbornik. Mathematics},
     pages = {65--79},
     year = {1971},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_1_a3/}
}
TY  - JOUR
AU  - E. M. Beniaminov
TI  - A universal property of Deheuvels homology
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 65
EP  - 79
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_1_a3/
LA  - en
ID  - SM_1971_13_1_a3
ER  - 
%0 Journal Article
%A E. M. Beniaminov
%T A universal property of Deheuvels homology
%J Sbornik. Mathematics
%D 1971
%P 65-79
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1971_13_1_a3/
%G en
%F SM_1971_13_1_a3
E. M. Beniaminov. A universal property of Deheuvels homology. Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/SM_1971_13_1_a3/

[1] S. Maklein, Gomologiya, Mir, Moskva, 1966

[2] E. G. Sklyarenko, “Teoriya gomologii i aksioma tochnosti”, Uspekhi matem. nauk, 24:5(149) (1969), 87–140 | MR | Zbl

[3] R. Deheuvels, “Homologie des ensembles ordonees et des espaces topologiques”, Bull. Soc. Math. France, 90:2 (1962), 261–321 | MR | Zbl

[4] E. Luft, “Eine Verallgemeinerung des Cechschen Homologietheorie”, Bonn. Math. Schr., 1959, no. 8 | MR | Zbl

[5] J. E. Roos, “Sur les foncteurs derives de lim. Applications”, C. R. Acad. Sci., 252:24 (1961), 3702–3704 | MR | Zbl