Boundary value problems for systems with a parameter
Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 25-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with problems of the form $$ A\biggl (x,\frac\partial{\partial x},p\biggr)u(x)=f(x)\quad\text{in}\quad G,\qquad B\biggl(x,\frac\partial{\partial x},p\biggr)u(x)=g(x)\quad\text{on}\quad\Gamma. $$ Here $G$ is a region in $R_x^n$ with smooth boundary $\Gamma$; $A$ and $B$ are matrices of linear partial differential operators with smooth coefficients, depending polynomially on the complex parameter $p$. The operator $A$ is obtained by replacing $\partial/\partial x$ by $p$ in the operator $A(x,\partial/\partial x,\partial/\partial t)$, which is strongly hyperbolic in the sense of I. G. Petrovskii. Under some supplementary assumptions, the existence and uniqueness of a strong solution in the spaces $H_{qs}$ is demonstrated, and an a priori estimate in norms involving the parameter $p$ is obtained for large values $\operatorname{Re}p$. Bibliography: 30 titles.
@article{SM_1971_13_1_a2,
     author = {M. S. Agranovich},
     title = {Boundary value problems for systems with a~parameter},
     journal = {Sbornik. Mathematics},
     pages = {25--64},
     year = {1971},
     volume = {13},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_1_a2/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Boundary value problems for systems with a parameter
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 25
EP  - 64
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_1_a2/
LA  - en
ID  - SM_1971_13_1_a2
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Boundary value problems for systems with a parameter
%J Sbornik. Mathematics
%D 1971
%P 25-64
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1971_13_1_a2/
%G en
%F SM_1971_13_1_a2
M. S. Agranovich. Boundary value problems for systems with a parameter. Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 25-64. http://geodesic.mathdoc.fr/item/SM_1971_13_1_a2/

[1] I. G. Petrovskii, “Uber das Cauchysche Problem fur System von partiellen Differentialgleichungen”, Matem. sb., 2(44) (1937), 815–870

[2] H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Uppsala University, 1969 ; Matematika, 14:5 (1970), 98–112 | MR

[3] T. Balaban, “On the mixed problem for a hyperbolic equation”, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys., 17:4 (1969), 231–235 | MR | Zbl

[4] S. Mizohata, “Systèmes hyperboliques”, J. Math. Soc. Japan, 11:3 (1959), 205–233 | MR | Zbl

[5] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, Moskva, 1965 | MR

[6] L. Sarason, “Differentiable solutions of symmetrizable and singular symmetric first order systems”, Arch. Rational Mech. Anal., 26 (1967), 357–384 | DOI | MR | Zbl

[7] M. S. Agranovich, “Granichnye zadachi dlya sistem psevdodifferentsialnykh operatorov 1-go poryadka”, Uspekhi matem. nauk, XXIV:1(145) (1969), 61–125

[8] K. O. Friedrichs, P. D. Lax, “Boundary value problems for first order operators”, Comm. Pure Appl. Math., 18 (1965), 365–388 | DOI | MR

[9] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, XIX:3(117) (1964), 53–161

[10] K. O. Friedrichs, Pseudo-differential operators, an introduction, New York University, 1968

[11] M. G. Crandall, “Boundary value problems for symmetric positive differential operators of odd order”, J. Math. Mech., 18:2 (1968), 155–172 | MR | Zbl

[12] K. Asano, T. Sirota, “On certain mixed problem for hyperbolic equations of higer order. I, II”, Proc. Japan Acad., 45:3 (1969), 145–148 | DOI | MR | Zbl

[13] F. Cardoso, “A well posed problem for pseudo-differential operators”, An. Acad. Brasil. ciěnc, 41:1 (1969), 29–35 | MR | Zbl

[14] F. Cardoso, On the existence and differentiability of weak solution of a boundary value problem for certain class of pseudo-differential operators, Notas e Comunic. Mat., no. 21, 1969 | MR

[15] M. Icava, “A mixed problem fcr hyperbolae equations of second order with a first derivative boundary conditions”, Publ. R. I. M. S., no. 5, Kyoto Univ., 1969, 119–147

[16] S. Agmon, “Problèmes mixtes pour les équations hyperboliques d'ordre supérieur”, Colloques sur les équations aux dériveés partielles, C. N. R. S., Paris, 1962, 13–18 | MR

[17] L. R. Volevich, V. P. Paneyakh, “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, Uspekhi matem. nauk, XX:1(121) (1965), 3–74

[18] Dzh. Dzh. Kon, L. Nirenberg, “Algebra psevdodifferentsialnykh operatorov”, Psevdodifferentsialnye operatory, 1967, 9–62, Mir, Moskva | MR

[19] L. Khermander, “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Mir, Moskva, 1967, 297–367 | MR

[20] P. D. Lax, L. Nirenberg, “On stability for difference schemes; a sharp form of Garding's inequality”, Comm. Pure Appl. Math., 19 (1956), 473–492 ; Matematika, 11:6 (1967), 3–20 | DOI | MR | MR

[21] L. Nirenberg, “Pseudo-differential operators”, Berkeley Symposium on Global Analysis, 1968, 14.1–14.35 | MR

[22] M. Z. Solomyak, “Ob uslovii Ya. B. Lopatinskogo razreshimosti kraevykh zadach”, Vestnik LGU, 1965, no. 1, 143–144 | MR

[23] B. R. Vainberg, V. V. Grushin, “O ravnomerno neellipticheskikh zadachakh. I”, Matem. sb., 72(114) (1967), 602–636 | MR | Zbl

[24] L. Sarason, “On hyperbolic mixed problems”, Arch. Rational Mech. Anal., 18 (1965), 311–344 | DOI | MR

[25] H. Kumano-go, “Remarks on pseudo-differential operators”, J. Math. Soc. Japan, 21:3 (1969), 413–439 | Zbl

[26] L. P. Volevich, S. G. Gindikin, “Zadacha Koshi dlya plyuriparabolicheskikh differentsialnykh uravnenii. I”, Matem. ob., 75(117) 1968, 64–105 | Zbl

[27] Ya. B. Lopatinskii, “Milana zadacha tipu Komi–Dirikhle dlya pivnyan rinepbolichnogo tipu”, Dopovidi AN URSR, 7 (1970), 592–594 | MR

[28] T. Sadamatsu, “On mixed problems for first order hyperbolic systems with constant coefficients”, Proc. Japan Acad., 45:8 (1969), 686–691 | DOI | MR | Zbl

[29] T. Shirota, R. Agemi, “On certain mixed problem for hyperbolic equations of higher order. III”, Proc. Japan Acad., 45:10 (1969), 954–858 | DOI | MR

[30] T. Shirota, K. Asano, “On mixed problems for regularly hyperbolic systems”, J. Fac. Sci. Hokkaido Univ., Ser. 1, 21:1 (1970), 1–45 | MR | Zbl