Conjugacy of polar factorizations of Lie groups
Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 12-24

Voir la notice de l'article provenant de la source Math-Net.Ru

A Lie group is said to be effective if it is connected and contains no compact normal divisors. A factorization of a connected Lie group into the product of two connected subgroups, the first of which is maximally compact and the second completely solvable is called a polar factorization. In this article the following theorem is proved. Theorem. Any two polar factorizations of an effective Lie group are conjugate under an inner automorphism. Bibliography: 5 titles.
@article{SM_1971_13_1_a1,
     author = {D. V. Alekseevskii},
     title = {Conjugacy of polar factorizations of {Lie} groups},
     journal = {Sbornik. Mathematics},
     pages = {12--24},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1971_13_1_a1/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
TI  - Conjugacy of polar factorizations of Lie groups
JO  - Sbornik. Mathematics
PY  - 1971
SP  - 12
EP  - 24
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1971_13_1_a1/
LA  - en
ID  - SM_1971_13_1_a1
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%T Conjugacy of polar factorizations of Lie groups
%J Sbornik. Mathematics
%D 1971
%P 12-24
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1971_13_1_a1/
%G en
%F SM_1971_13_1_a1
D. V. Alekseevskii. Conjugacy of polar factorizations of Lie groups. Sbornik. Mathematics, Tome 13 (1971) no. 1, pp. 12-24. http://geodesic.mathdoc.fr/item/SM_1971_13_1_a1/