Estimates of the curvature of a~three-dimensional evolute
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 615-637

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses compact three-dimensional evolutes of positive curvature and convex boundary and establishes inequalities that connect their integral characteristics: volume $V$, boundary area $S$, mean integral curvature of the boundary $H$, radius of the inscribed sphere $r$, and inner integral curvature $\Omega$. The last characteristic is a measure of non-Euclidicity of an evolute involved: $\Omega=0$ if and only if the evolute is locally Euclidean. The inequalities obtained in particular imply that $2\pi\chi r\leqslant H+\Omega$, where $\chi$ is the Euler characteristic of the evolute boundary. For an evolute homeomorphic to a sphere we have $\chi=2$, so that $r\leqslant\frac{H+\Omega}{4\pi}$, $V\leqslant Sr\leqslant\frac{H+\Omega}{4\pi}$. Equality in the estimate $r\leqslant\frac{H+\Omega}{4\pi}$ is achieved for a Euclidean sphere: for it $\Omega=0$ and $r=\frac H{4\pi}$. Figures: 6. Bibliography: 2 titles.
@article{SM_1970_12_4_a8,
     author = {Yu. A. Volkov and B. V. Dekster},
     title = {Estimates of the curvature of a~three-dimensional evolute},
     journal = {Sbornik. Mathematics},
     pages = {615--637},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a8/}
}
TY  - JOUR
AU  - Yu. A. Volkov
AU  - B. V. Dekster
TI  - Estimates of the curvature of a~three-dimensional evolute
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 615
EP  - 637
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_4_a8/
LA  - en
ID  - SM_1970_12_4_a8
ER  - 
%0 Journal Article
%A Yu. A. Volkov
%A B. V. Dekster
%T Estimates of the curvature of a~three-dimensional evolute
%J Sbornik. Mathematics
%D 1970
%P 615-637
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_12_4_a8/
%G en
%F SM_1970_12_4_a8
Yu. A. Volkov; B. V. Dekster. Estimates of the curvature of a~three-dimensional evolute. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 615-637. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a8/