Estimates of the curvature of a three-dimensional evolute
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 615-637
Cet article a éte moissonné depuis la source Math-Net.Ru
The article discusses compact three-dimensional evolutes of positive curvature and convex boundary and establishes inequalities that connect their integral characteristics: volume $V$, boundary area $S$, mean integral curvature of the boundary $H$, radius of the inscribed sphere $r$, and inner integral curvature $\Omega$. The last characteristic is a measure of non-Euclidicity of an evolute involved: $\Omega=0$ if and only if the evolute is locally Euclidean. The inequalities obtained in particular imply that $2\pi\chi r\leqslant H+\Omega$, where $\chi$ is the Euler characteristic of the evolute boundary. For an evolute homeomorphic to a sphere we have $\chi=2$, so that $r\leqslant\frac{H+\Omega}{4\pi}$, $V\leqslant Sr\leqslant\frac{H+\Omega}{4\pi}$. Equality in the estimate $r\leqslant\frac{H+\Omega}{4\pi}$ is achieved for a Euclidean sphere: for it $\Omega=0$ and $r=\frac H{4\pi}$. Figures: 6. Bibliography: 2 titles.
@article{SM_1970_12_4_a8,
author = {Yu. A. Volkov and B. V. Dekster},
title = {Estimates of the curvature of a~three-dimensional evolute},
journal = {Sbornik. Mathematics},
pages = {615--637},
year = {1970},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a8/}
}
Yu. A. Volkov; B. V. Dekster. Estimates of the curvature of a three-dimensional evolute. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 615-637. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a8/
[1] B. V. Dekster, “Nekotorye integralnye otsenki dlya trekhmernykh razvertok”, Matem. sb., 81(123) (1970), 256–278 | MR | Zbl
[2] A. D. Aleksandrov, V. V. Streltsov, “Izoperimetricheskaya zadacha i otsenki dliny krivoi na poverkhnosti”, Trudy matem. in-ta imeni V. A. Steklova, LXXVI, 1965, 67–80 | MR | Zbl