On infinitesimal deformations of surfaces of positive curvature with an isolated flat point
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 595-614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study infinitesimal deformations of convex pieces of surfaces with boundary. It is assumed that the surface has positive gaussian curvature $K>0$. We investigate infinitesimal deformations, subject on the boundary of the surface to the condition $\lambda\delta k_n+\mu\delta\tau_g=\sigma$, where $\delta k_n$ and $\sigma\tau_g$ are variations of the normal curvature and geodesic torsion of the boundary, $\lambda$ and $\mu$ are fixed known functions, and $\sigma$ an arbitrary given function. We establish necessary and sufficient conditions for the rigidity of the surface under these boundary conditions. Bibliography: 12 titles.
@article{SM_1970_12_4_a7,
     author = {Z. D. Usmanov},
     title = {On~infinitesimal deformations of surfaces of positive curvature with an isolated flat point},
     journal = {Sbornik. Mathematics},
     pages = {595--614},
     year = {1970},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a7/}
}
TY  - JOUR
AU  - Z. D. Usmanov
TI  - On infinitesimal deformations of surfaces of positive curvature with an isolated flat point
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 595
EP  - 614
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_4_a7/
LA  - en
ID  - SM_1970_12_4_a7
ER  - 
%0 Journal Article
%A Z. D. Usmanov
%T On infinitesimal deformations of surfaces of positive curvature with an isolated flat point
%J Sbornik. Mathematics
%D 1970
%P 595-614
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_12_4_a7/
%G en
%F SM_1970_12_4_a7
Z. D. Usmanov. On infinitesimal deformations of surfaces of positive curvature with an isolated flat point. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 595-614. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a7/

[1] N. V. Efimov, Kachestvennye voprosy teorii deformatsii poverkhnostei “v malom”, Trudy Matem. in-ta im. V. A. Steklova, XXX, 1949 | MR | Zbl

[2] V. A. Tartakovskii, “Ob $N$-invariantakh N. V. Efimova iz teorii izgibaniya poverkhnostei”, Matem. sb., 32(74) (1953), 225–248 | MR | Zbl

[3] L. G. Mikhailov, Z. D. Usmanov, “Beskonechno malye izgibaniya poverkhnostei vrascheniya polozhitelnoi krivizny s konicheskoi ili parabolicheskoi tochkoi v polyuse”, DAN SSSR, 166:4 (1966), 791–794 | MR

[4] L. G. Mikhailov, Z. D. Usmanov, Beskonechno malye izgibaniya poverkhnostei vrascheniya polozhitelnoi krivizny s parabolicheskoi ili konicheskoi tochkoi v polyuse, Issledovaniya po kraevym zadacham teorii funktsii i differentsialnykh uravnenii, AN Tadzh.SSR, Dushanbe, 1965

[5] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, Moskva, 1959 | MR

[6] B. V. Boyarskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43(85) (1957), 451–503 | MR

[7] I. N. Vekua, “Nepodvizhnye osobye tochki obobschennykh analiticheskikh funktsii”, DAN SSSR, 145:1 (1962), 24–26 | MR | Zbl

[8] Z. D. Usmanov, “Zadacha Dirikhle dlya nekotorykh sistem differentsialnykh uravnenii s singulyarnymi koeffitsientami”, DAN Tadzh.SSR, VIII:10 (1965), 3–7

[9] L. G. Mikhailov, Novyi klass osobykh integralnykh uravnenii i ego primenenie k differentsialnym uravneniyam s singulyarnymi koeffitsientami, AN Tadzh.SSR, Dushanbe, 1963 | MR

[10] A. I. Achildiev, “Kraevye zadachi dlya nekotorykh vyrozhdayuschikhsya ellipticheskikh uravnenii na ploskosti”, DAN Tadzh.SSR, VI:1 (1963), 6–10

[11] F. D. Gakhov, Kraevye zadachi, Fizmatgiz, Moskva, 1962

[12] M. I. Voitsekhovskii, “O zhestkosti vypuklykh poverkhnostei s kraem”, Vestnik MGU, 1964, no. 6, 35–40