The Chern–Dold character in cobordisms. I
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 573-594 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The fundamental results of the paper are a) derivation of formulas for the Chern–Dold character $\mathrm{ch}^U$ and $\mathrm{ch}_U$ in the theory of universal bordisms $U_*$ and cobordisms $U^*$, respectively; b) derivation of the formula of a series over the ring $\Omega^*_u$ which gives addition in the formal group of “geometric” cobordisms, and derivation of the formula for the series $k\Psi^k_U(u)$, where $u\in U^2(CP^\infty_k)$ and the $\Psi^k_U$ are Adams operators in $U^*$-theory. Bibliography: 12 titles.
@article{SM_1970_12_4_a6,
     author = {V. M. Buchstaber},
     title = {The {Chern{\textendash}Dold} character in {cobordisms.~I}},
     journal = {Sbornik. Mathematics},
     pages = {573--594},
     year = {1970},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a6/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - The Chern–Dold character in cobordisms. I
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 573
EP  - 594
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_4_a6/
LA  - en
ID  - SM_1970_12_4_a6
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T The Chern–Dold character in cobordisms. I
%J Sbornik. Mathematics
%D 1970
%P 573-594
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_12_4_a6/
%G en
%F SM_1970_12_4_a6
V. M. Buchstaber. The Chern–Dold character in cobordisms. I. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 573-594. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a6/

[1] Dzh. F. Adams, “O gruppakh $J(x)$. II”, Matematika, 11:4 (1967), 3–42

[2] J. F. Adams, “Lectures on generalised cohomology”, Lecture Notes in Mathematics, 1969, no. 99, 1–138 | DOI | MR | Zbl

[3] M. F. Atya, “Prostranstva Toma”, Matematika, 10:5 (1966), 48–70

[4] E. Daier, “Sootnosheniya mezhdu teoriyami kogomologii”, Matematika, 9:2 (1965), 16–18

[5] A. Dold, “Sootnosheniya mezhdu ordinarnymi i ekstraordinarnymi teoriyami gomologii”, Matematika, 9:2 (1965), 8–14 | MR

[6] P. Konner, E. Floid, “O sootnoshenii teorii bordizmov i $K$-teorii”, Dopolnenie k kn.: Gladkie periodicheskie otobrazheniya, Mir, Moskva, 1969

[7] P. Konner, E. Floid, Gladkie periodicheskie otobrazheniya, Mir, Moskva, 1969

[8] J. Milnor, “Cobordism ring and complex analogue”, Amer. J. Math., 82:3 (1960), 505–521 | DOI | MR | Zbl

[9] S. P. Novikov, “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR, serii matem., 31 (1967), 855–951 | Zbl

[10] S. P. Novikov, “Gomotopicheskie svoistva kompleksov Toma”, Matem. sb., 57(99) (1962), 406–442

[11] S. P. Novikov, “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR, seriya matem., 32 (1968), 1245–1263 | MR

[12] Chzhen Shen-Shen, Kompleksnye mnogoobraziya, IL, Moskva, 1961