The Chern--Dold character in cobordisms.~I
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 573-594
Voir la notice de l'article provenant de la source Math-Net.Ru
The fundamental results of the paper are
a) derivation of formulas for the Chern–Dold character $\mathrm{ch}^U$ and $\mathrm{ch}_U$ in the theory of universal bordisms $U_*$ and cobordisms $U^*$, respectively;
b) derivation of the formula of a series over the ring $\Omega^*_u$ which gives addition in the formal group of “geometric” cobordisms, and derivation of the formula for the series $k\Psi^k_U(u)$, where $u\in U^2(CP^\infty_k)$ and the $\Psi^k_U$ are Adams operators in $U^*$-theory.
Bibliography: 12 titles.
@article{SM_1970_12_4_a6,
author = {V. M. Buchstaber},
title = {The {Chern--Dold} character in {cobordisms.~I}},
journal = {Sbornik. Mathematics},
pages = {573--594},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a6/}
}
V. M. Buchstaber. The Chern--Dold character in cobordisms.~I. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 573-594. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a6/