On the Neumann boundary problem in a domain with complicated boundary
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 553-571 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The second boundary value problem is studied for a Helmholtz equation in a domain $G^{(n)}$, which is the complement of a strongly disconnected set $F^{(n)}$, contained in a neighborhood of a fixed surface $\Gamma$. An approximate description of a solution $u^{(n)}(x)$ of this problem is based on the study of the sequence $\{u^{(n)}(x),n=1,2,\dots\}$ of solutions corresponding to a sequence $\{F^{(n)}\}$ such that for $n\to\infty$ the set $F^{(n)}$ becomes infinitely close to $\Gamma$ and becomes increasingly disconnected. The sets $F^{(n)}$ are characterized by the notion of conductivity, introduced in this paper. Necessary and sufficient conditions are given (in terms of conductivity) for the existence of a function $v(x)$ as a limit of the sequence $\{u^{(n)}(x)\}$ for $n\to\infty$ such that it satisfies the same conditions outside $\Gamma$, and on $\Gamma$ the conjugacy conditions of the form $$ \biggl(\frac{\partial v}{\partial\nu}\biggr)_+=\biggl(\frac{\partial v}{\partial\nu}\biggr)_-=p(x)[v_+-v_-], $$ where the limits of functions from different sides of $\Gamma$ are indicated by the signs $+$ and $-$; $\nu$ is the normal to $\Gamma$. Figure: 1. Bibliography: 7 titles.
@article{SM_1970_12_4_a5,
     author = {E. Ya. Khruslov},
     title = {On~the {Neumann} boundary problem in a~domain with complicated boundary},
     journal = {Sbornik. Mathematics},
     pages = {553--571},
     year = {1970},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a5/}
}
TY  - JOUR
AU  - E. Ya. Khruslov
TI  - On the Neumann boundary problem in a domain with complicated boundary
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 553
EP  - 571
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_4_a5/
LA  - en
ID  - SM_1970_12_4_a5
ER  - 
%0 Journal Article
%A E. Ya. Khruslov
%T On the Neumann boundary problem in a domain with complicated boundary
%J Sbornik. Mathematics
%D 1970
%P 553-571
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_12_4_a5/
%G en
%F SM_1970_12_4_a5
E. Ya. Khruslov. On the Neumann boundary problem in a domain with complicated boundary. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 553-571. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a5/

[1] V. A. Marchenko, G. V. Suzikov, “Vtoraya kraevaya zadacha v oblastyakh so slozhnoi granitsei”, Matem. sb., 69(111) (1969), 35–60

[2] G. N. Gestrin, D. Sh. Lundina, V. A. Marchenko, “Ob odnom predelnom sluchae vtoroi kraevoi zadachi”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 5, KhGU, Kharkov, 1967

[3] G. V. Suzikov, E. Ya. Khruslov, “O prokhozhdenii zvukovykh voln cherez tonkie kanaly v otrazhayuschem sloe”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 5, KhGU, Kharkov, 1967 | MR

[4] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, 1950

[5] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, Moskva, 1962 | MR

[6] V. G. Mazya, “$P$-provodimost i teoremy vlozheniya prostranstv v prostranstvo $C$”, DAN SSSR, 140:2 (1961), 1299–1302

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, 1964 | MR