On rings radical over commutative subrings
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 511-520
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved. If a ring $R$ is radical over a commutative subring $K$, then all the nilpotent elements of $R$ generate a null-ideal $T$ for which the corresponding factor ring is commutative. An affirmative answer is thus provided for a question raised by Faith.
Bibliography: 5 titles.
@article{SM_1970_12_4_a1,
author = {A. I. Likhtman},
title = {On rings radical over commutative subrings},
journal = {Sbornik. Mathematics},
pages = {511--520},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a1/}
}
A. I. Likhtman. On rings radical over commutative subrings. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 511-520. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a1/