On rings radical over commutative subrings
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 511-520
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved. If a ring $R$ is radical over a commutative subring $K$, then all the nilpotent elements of $R$ generate a null-ideal $T$ for which the corresponding factor ring is commutative. An affirmative answer is thus provided for a question raised by Faith. Bibliography: 5 titles.
@article{SM_1970_12_4_a1,
author = {A. I. Likhtman},
title = {On rings radical over commutative subrings},
journal = {Sbornik. Mathematics},
pages = {511--520},
year = {1970},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a1/}
}
A. I. Likhtman. On rings radical over commutative subrings. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 511-520. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a1/
[1] C. Faith, “Algebraic division ring extensions”, Proc. Amer. Math. Soc., 11 (1960), 43–53 | DOI | MR | Zbl
[2] C. Faith, “Radical extensions of ring”, Proc. Amer. Math. Soc., 12 (1961), 274–283 | DOI | MR | Zbl
[3] H. Dzhekobson, Stroenie kolets, IL, Moskva, 1961
[4] E. P. Armendaris, “On radical extensions of rings”, J. Australian Math. Soc., 7:4 (1967), 552–554 | DOI | MR
[5] N. Jacobson, Lectures in abstract algebra, v. 1, New York, 1951