Limit density matrices for one-dimensional continuous systems in quantum statistical mechanics
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 489-510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of limit density matrices is proved for one-dimensional continuous quantum systems whose interaction satisfies certain natural conditions (finiteness and the existence of a hard core). The basic apparatus used is a modification of the well-known transfer-matrix method. Bibliography: 12 titles.
@article{SM_1970_12_4_a0,
     author = {Yu. M. Sukhov},
     title = {Limit density matrices for one-dimensional continuous systems in~quantum statistical mechanics},
     journal = {Sbornik. Mathematics},
     pages = {489--510},
     year = {1970},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a0/}
}
TY  - JOUR
AU  - Yu. M. Sukhov
TI  - Limit density matrices for one-dimensional continuous systems in quantum statistical mechanics
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 489
EP  - 510
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_4_a0/
LA  - en
ID  - SM_1970_12_4_a0
ER  - 
%0 Journal Article
%A Yu. M. Sukhov
%T Limit density matrices for one-dimensional continuous systems in quantum statistical mechanics
%J Sbornik. Mathematics
%D 1970
%P 489-510
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_12_4_a0/
%G en
%F SM_1970_12_4_a0
Yu. M. Sukhov. Limit density matrices for one-dimensional continuous systems in quantum statistical mechanics. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 489-510. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a0/

[1] H. Araki, “Gibbs states of a one dimensional quantum lattice”, Comm. Math. Phys., 14 (1969), 120–157 | DOI | MR | Zbl

[2] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, Moskva, 1965 | MR

[3] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, Moskva, 1965 | MR | Zbl

[4] R. L. Dobrushin, “Zadacha edinstvennosti gibbsovskogo sluchainogo polya i problema fazovykh perekhodov”, Funkts. analiz, 2:4 (1968), 44–57 | MR | Zbl

[5] R. L. Dobrushin, “Gibbsovskie polya. Obschii sluchai”, Funkts. analiz, 3:1 (1969), 27–35 | MR | Zbl

[6] Zh. Zhinibr, “Privedennye matritsy plotnosti kvantovykh gazov”, Matematika, 12:4 (1968), 104–130

[7] M. G. Krein, M. A. Rutman, “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, Uspekhi matem. nauk, III:1(23) (1948), 3–95 | MR

[8] R. A. Minlos, “Predelnoe raspredelenie Gibbsa”, Funkts. analiz, 1:2 (1967), 60–74 | MR

[9] D. Ruelle, “Statistical mechanics of a one dimensional classical lattice gas”, Comm. Math. Phys., 9 (1968), 267–278 | DOI | MR | Zbl

[10] Yu. M. Sukhov, “Odnoparametricheskaya polugruppa operatorov, porozhdennaya raspredeleniem Gibbsa”, Uspekhi matem. nauk, XXV:1(151) (1970), 199–200

[11] R. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, Moskva, 1962

[12] K. Khuang, Statisticheskaya mekhanika, Mir, Moskva, 1966