On~the Galois cohomology of elliptic curves defined over a~local field
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 477-488

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we calculate the group of principal homogeneous spaces over elliptic curves defined over a complete discretely normed field with algebraically closed residue field of characteristic $p>3$ and belonging to types $(c\,4)$, $(c\,5)$ in the classification of A. Neron. The result of our calculations refutes Neron's earlier statement that the group of principal homogeneous spaces over curves of type $(c)$ is trivial. Moreover the calculation of the fundamental group of the proalgebraic group of the points on these curves that are rational over the ground field supports (in this case) the conjecture of I. R. Shafarevich concerning the duality of the group of principal homogeneous spaces and the character group of the fundamental group. Bibliography: 7 titles.
@article{SM_1970_12_3_a8,
     author = {O. N. Vvedenskii},
     title = {On~the {Galois} cohomology of elliptic curves defined over a~local field},
     journal = {Sbornik. Mathematics},
     pages = {477--488},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a8/}
}
TY  - JOUR
AU  - O. N. Vvedenskii
TI  - On~the Galois cohomology of elliptic curves defined over a~local field
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 477
EP  - 488
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a8/
LA  - en
ID  - SM_1970_12_3_a8
ER  - 
%0 Journal Article
%A O. N. Vvedenskii
%T On~the Galois cohomology of elliptic curves defined over a~local field
%J Sbornik. Mathematics
%D 1970
%P 477-488
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a8/
%G en
%F SM_1970_12_3_a8
O. N. Vvedenskii. On~the Galois cohomology of elliptic curves defined over a~local field. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 477-488. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a8/