On a class of hypoelliptic operators
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 458-476 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let the variables in $R^{k+n}$ be broken up into two groups $x=(x',y)$, where $x'\in R^k$ and $y\in R^n$. We consider differential operators $p(x,D)$ with polynomial symbols of the form $$ p(x,D)=\sum_{|\alpha|+|\beta|\leqslant m,\,|\gamma|\leqslant m\delta}a_{\alphay\beta\gamma}y^\gamma D_{x'}^\beta D_y^\alpha,\qquad(\xi,\eta)\in R^k\times R^n, $$ where $\delta>0$. We assume that the symbol $p(x,\xi,\eta)$ is quasihomogeneous: $$ p\biggl(\frac y\lambda;\lambda^{1+\delta}\xi,\lambda\eta\biggr)=\lambda^mp(y;\xi,\eta)\qquad\forall\,\lambda>0 $$ and that $p(x,D)$ is elliptic for $y\ne0$. We have found a necessary and sufficient condition for operators of this class to be hypoelliptic: namely, that the equation $p(y;\xi,D_y)v(y)=\nobreak0$, $\xi\ne0$, have no nontrivial solutions in $S(R_y^n)$. Thus for example, the operator $\Delta_y^l+|y|^{2r}\Delta_{x'}^l$ is hypoelliptic for any integers $l>0$ and $r>0$, and the operator $\Delta^2_y+|y|^4\Delta_{x'}^2+\lambda\Delta_{x'}$ is hypoelliptic if and only if $\lambda$ is not an eigenvalue of the operator $\Delta^2_y+|y|^4$ in $L_2(R_y^n)$. These results are partially extended to operators with variable coefficients and to pseudodifferential operators. Bibliography: 22 titles.
@article{SM_1970_12_3_a7,
     author = {V. V. Grushin},
     title = {On~a~class of hypoelliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {458--476},
     year = {1970},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - On a class of hypoelliptic operators
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 458
EP  - 476
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/
LA  - en
ID  - SM_1970_12_3_a7
ER  - 
%0 Journal Article
%A V. V. Grushin
%T On a class of hypoelliptic operators
%J Sbornik. Mathematics
%D 1970
%P 458-476
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/
%G en
%F SM_1970_12_3_a7
V. V. Grushin. On a class of hypoelliptic operators. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 458-476. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/

[1] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, Moskva, 1965 | MR

[2] G. E. Shilov, “Lokalnye svoistva reshenii differentsialnykh uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Uspekhi matem. nauk, XIV:5(89) (1959), 3–44

[3] B. Malgrange, “Sur une classe d'operateurs differentiels hypoelliptiques”, Bull. Soc. Math. France, 85 (1957), 283–306 | MR | Zbl

[4] F. Treves, “Operateurs differentiels hypoelliptiques”, Ann. Inst. Fourier, 9 (1959), 2–73 | MR

[5] S. Mizohata, “Solutions nulles et solution non analitiques”, J. Math. Kyoto Univ., 1 (1962), 271–302 | MR | Zbl

[6] L. Khermander, “Gipoellipticheskie differentsialnye operatory”, Matematika, 7:1 (1963), 66–78

[7] L. Khermander, “Psevdodifferentsialnye operatory i neellipticheskie kraevye zadachi”, Psevdodifferentsialnye operatory, Mir, Moskva, 1967, 166–296 | MR

[8] L. Khermander, “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Mir, Moskva, 1967, 297–367 | MR

[9] L. Khermander, “Gipoellipticheskie differentsialnye uravneniya vtorogo poryadka”, Matematika, 12:2 (1968), 88–109

[10] Yu. V. Egorov, “Gipoellipticheskie psevdodifferentsialnye operatory”, Trudy Mosk. matem. ob-va, 16 (1967), 99–108 | Zbl

[11] Yu. V. Egorov, “Psevdodifferentsialnye operatory glavnogo tipa”, Matem. sb., 73(115) (1967), 356–374 | Zbl

[12] Yu. V. Egorov, “Ob odnom klasse psevdodifferentsialnykh operatorov”, Matem. sb., 79(121) (1969), 59–77

[13] Yu. V. Egorov, “O subellipticheskikh psevdodifferentsialnykh operatorakh”, DAN SSSR, 188:1 (1969), 20–22 | Zbl

[14] Yu. V. Egorov, “Nevyrozhdennye subellipticheskie psevdodifferentsialnye operatory”, Matem. sb., 82(124) (1970), 323–342 | Zbl

[15] E. V. Radkevich, “Gipoellipticheskie operatory s kratnymi kharakteristikami”, Matem. sb., 79(121) (1969), 193–216 | Zbl

[16] V. S. Fedii, “Otsenka v normakh $H_s$ i gipoelliptichnost”, DAN SSSR, 193:2 (1970), 301–303 | MR | Zbl

[17] M. I. Vishik, V. V. Grushin, “Ellipticheskie psevdodifferentsialnye Operatory na zamknutom mnogoobrazii, vyrozhdayuschiesya na podmnogoobrazii”, DAN SSSR, 189:1 (1969), 16–19 | MR | Zbl

[18] M. I. Vishik, V. V. Grushin, “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh uravnenii vysshikh poryadkov”, Matem. sb., 79(121) (1969), 3–36 | Zbl

[19] V. V. Grushin, “Psevdodifferentsialnye operatory v $R^n$ s ogranichennymi simvolami”, Funkts. analiz, 4:3 (1970), 37–50 | MR | Zbl

[20] R. T. Sili, “Integro-differentsialnye operatory na vektornykh rassloeniyakh”, Matematika, 11:2 (1967), 57–97

[21] M. I. Vishik, V. V. Grushin, “Kraevye zadachi dlya ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Matem. sb., 80(122) (1969), 455–491 | Zbl

[22] Dzh. Dzh. Kon, L. Nirenberg, “Algebra psevdodifferentsialnykh operatorov”, Psevdodifferentsialnye operatory, Mir, Moskva, 1967, 9–62 | MR