On~a~class of hypoelliptic operators
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 458-476

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the variables in $R^{k+n}$ be broken up into two groups $x=(x',y)$, where $x'\in R^k$ and $y\in R^n$. We consider differential operators $p(x,D)$ with polynomial symbols of the form $$ p(x,D)=\sum_{|\alpha|+|\beta|\leqslant m,\,|\gamma|\leqslant m\delta}a_{\alphay\beta\gamma}y^\gamma D_{x'}^\beta D_y^\alpha,\qquad(\xi,\eta)\in R^k\times R^n, $$ where $\delta>0$. We assume that the symbol $p(x,\xi,\eta)$ is quasihomogeneous: $$ p\biggl(\frac y\lambda;\lambda^{1+\delta}\xi,\lambda\eta\biggr)=\lambda^mp(y;\xi,\eta)\qquad\forall\,\lambda>0 $$ and that $p(x,D)$ is elliptic for $y\ne0$. We have found a necessary and sufficient condition for operators of this class to be hypoelliptic: namely, that the equation $p(y;\xi,D_y)v(y)=\nobreak0$, $\xi\ne0$, have no nontrivial solutions in $S(R_y^n)$. Thus for example, the operator $\Delta_y^l+|y|^{2r}\Delta_{x'}^l$ is hypoelliptic for any integers $l>0$ and $r>0$, and the operator $\Delta^2_y+|y|^4\Delta_{x'}^2+\lambda\Delta_{x'}$ is hypoelliptic if and only if $\lambda$ is not an eigenvalue of the operator $\Delta^2_y+|y|^4$ in $L_2(R_y^n)$. These results are partially extended to operators with variable coefficients and to pseudodifferential operators. Bibliography: 22 titles.
@article{SM_1970_12_3_a7,
     author = {V. V. Grushin},
     title = {On~a~class of hypoelliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {458--476},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - On~a~class of hypoelliptic operators
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 458
EP  - 476
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/
LA  - en
ID  - SM_1970_12_3_a7
ER  - 
%0 Journal Article
%A V. V. Grushin
%T On~a~class of hypoelliptic operators
%J Sbornik. Mathematics
%D 1970
%P 458-476
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/
%G en
%F SM_1970_12_3_a7
V. V. Grushin. On~a~class of hypoelliptic operators. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 458-476. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a7/