The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 453-457
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathrm A^R_n$ denote the coefficient space of the equations $\frac{dy}{dx}=\frac{P_n(x,y)}{Q_n(x,y)}$, $(x,y)\in R^2$, where $P_n$ and $Q_n$ are polynomials of degree $n\geqslant2$, and let $M_k$ denote the set of equations $\alpha\in\mathrm A^R_n$ that have limit cycles of multiplicity not less than $k$. For $2\leqslant k\leqslant\frac{n(n+1)}2$ the set $M_k$ is not empty. A proof is given for the
Theorem. The set $M_k$ does not form a semialgebraic manifold.
Bibliography: 4 titles.
@article{SM_1970_12_3_a6,
author = {Yu. S. Ilyashenko},
title = {The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles},
journal = {Sbornik. Mathematics},
pages = {453--457},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/}
}
TY - JOUR AU - Yu. S. Ilyashenko TI - The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles JO - Sbornik. Mathematics PY - 1970 SP - 453 EP - 457 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/ LA - en ID - SM_1970_12_3_a6 ER -
%0 Journal Article %A Yu. S. Ilyashenko %T The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles %J Sbornik. Mathematics %D 1970 %P 453-457 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/ %G en %F SM_1970_12_3_a6
Yu. S. Ilyashenko. The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 453-457. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/