The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 453-457

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm A^R_n$ denote the coefficient space of the equations $\frac{dy}{dx}=\frac{P_n(x,y)}{Q_n(x,y)}$, $(x,y)\in R^2$, where $P_n$ and $Q_n$ are polynomials of degree $n\geqslant2$, and let $M_k$ denote the set of equations $\alpha\in\mathrm A^R_n$ that have limit cycles of multiplicity not less than $k$. For $2\leqslant k\leqslant\frac{n(n+1)}2$ the set $M_k$ is not empty. A proof is given for the Theorem. The set $M_k$ does not form a semialgebraic manifold. Bibliography: 4 titles.
@article{SM_1970_12_3_a6,
     author = {Yu. S. Ilyashenko},
     title = {The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles},
     journal = {Sbornik. Mathematics},
     pages = {453--457},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/}
}
TY  - JOUR
AU  - Yu. S. Ilyashenko
TI  - The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 453
EP  - 457
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/
LA  - en
ID  - SM_1970_12_3_a6
ER  - 
%0 Journal Article
%A Yu. S. Ilyashenko
%T The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles
%J Sbornik. Mathematics
%D 1970
%P 453-457
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/
%G en
%F SM_1970_12_3_a6
Yu. S. Ilyashenko. The nonalgebraic character of the manifold of differential equations with rational right-hand sides and with multiple limit cycles. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 453-457. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a6/