Lie groups transitive on Grassmann and Stiefel manifolds
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 405-427 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lie groups which ate transitive on real Grassmann manifolds $G_{n,2k}$ and on quaternionic Grassmann manifolds $Q_{n,k}$ are studied. The principal result states that each connected Lie group which acts transitively and effectively on $G_{n,2k}$ ($2<2k) or on $Q_{n,k}$ ($2) is similar to the real linear group $SL(n,\mathbf R)$ or the quaternionic group $SU^*(2n)$ or their subgroups $SO(n)$ and $Sp(n)$ respectively. The analogous statement for complex Grassmann manifolds was shown by the author previously (Math. Sb. (N.S.) 75(117) (1968), 255–263). Also treated are all simple compact Lie groups which are transitive on real, complex or quaternionic Stiefel manifolds (with some exceptions). From this is obtained a classification of all noncompact simple Lie groups which are transitive on these manifolds and whose maximal compact subgroups contain a unique simple normal divisor of rank greater than 1. Bibliography: 15 titles.
@article{SM_1970_12_3_a4,
     author = {A. L. Onishchik},
     title = {Lie groups transitive on {Grassmann} and {Stiefel} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {405--427},
     year = {1970},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a4/}
}
TY  - JOUR
AU  - A. L. Onishchik
TI  - Lie groups transitive on Grassmann and Stiefel manifolds
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 405
EP  - 427
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a4/
LA  - en
ID  - SM_1970_12_3_a4
ER  - 
%0 Journal Article
%A A. L. Onishchik
%T Lie groups transitive on Grassmann and Stiefel manifolds
%J Sbornik. Mathematics
%D 1970
%P 405-427
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a4/
%G en
%F SM_1970_12_3_a4
A. L. Onishchik. Lie groups transitive on Grassmann and Stiefel manifolds. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 405-427. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a4/

[1] E. M. Andreev, E. B. Vinberg, A. G. Elashvili, “Orbity naibolshei razmernosti poluprostykh lineinykh grupp Li”, Funkts. analiz, 1:4 (1967), 3–7 | MR | Zbl

[2] A. Borel, “Le plan projectif des octaves et les sphères comme espaces homogènes”, C. R. Acad. Sci., 230:15 (1950), 1378–1380 | MR | Zbl

[3] A. Bopel, “O kogomologiyakh glavnykh rassloennykh prostranstv i odnorodnykh prostranstv kompaktnykh grupp Li”, Rassloennye prostranstva, IL, Moskva, 1958, 163–244

[4] A. Borel, “Klassifitsiruyuschie prostranstva ortogonalnykh grupp; mnogoobraziya Shtifelya”, Rassloennye prostranstva, IL, Moskva, 1958, 282–292

[5] A. Borel, Zh. P. Serr, “Gruppy Li i privedennye stepeni Stinroda”, Rassloennye prostranstva, IL, Moskva, 1958, 247–279

[6] A. Borel, J. de Siebenthal, “Les sous-grompes fermés de rang maximum des groupes de Lie clos”, Comm. Math. Helv., 23:3 (1949), 200–221 | DOI | MR | Zbl

[7] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72) (1952), 349–462 | MR | Zbl

[8] V. Y. Kraines, “Topology of quaternionic manifolds”, Trans. Amer. Math. Soc., 122:2 (1966), 357–367 | DOI | MR | Zbl

[9] A. L. Onischik, “Otnosheniya vklyucheniya mezhdu tranzitivnymi kompaktnymi gruppami preobrazovanii”, Trudy Mosk. matem. ob-va, 11 (1962), 199–242 | MR | Zbl

[10] A. L. Onischik, “O tranzitivnykh kompaktnykh gruppakh preobrazovanii”, Matem. sb., 60(102) (1963), 447–486

[11] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh. II”, Matem. sb., 74(116) (1967), 398–416 | Zbl

[12] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh. III”, Matem. sb., 75(117) (1968), 255–263 | Zbl

[13] A. L. Onischik, “Razlozheniya reduktivnykh grupp Li”, Matem. sb., 80(122) (1969), 533–599

[14] N. Stinrod, Topologiya kosykh proizvedenii, IL, Moskva, 1953

[15] J. Wolf, “Complex homogeneous contact manifolds and quaternionic symmetric spaces”, J. Math. and Mech., 14:6 (1965) | MR