Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 387-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma$ be the unit circle and let $L^k$ ($k=1,2,\dots$) be the Hilbert space of vector functions $f(\zeta)=\{f_j(\zeta)\}_{j=1}^k$ with coordinates in $L_2(\Gamma)$. Theorem. {\it Let $a(\zeta),b(\zeta)$ $(\zeta\in\Gamma)$ be $m\times n$ matrices with elements continuous on $\Gamma$. In order for the singular integral operator $T,$ from $L^n$ to $L^m,$ $$ (Tf)(\zeta)=c(\zeta)f(\zeta)+\frac{d(\zeta)}{\pi i}\int_\Gamma\frac{f(z)}{z-\zeta}\,dz\qquad(f\in L^n) $$ to be normally solvable it is necessary and sufficient for the following two conditions to be satisfied}. a) The rank of each of the matrices $c(\zeta)+d(\zeta)$ and $c(\zeta)-d(\zeta)$ is independent of $\zeta$ on the unit circumference. b) {\it$\inf_{x\in(\operatorname{Ker}\,T)^\perp,\,\|x\|=1}\{\rho(Px,\operatorname{Ker}aI)+\rho(Qx,\operatorname{Ker}bI)\}>0.$} By $P$ we denote the orthogonal projector in $L^n$ defined by $(Pf)(\zeta)=\frac12f(\zeta)+\frac1{2\pi i}\int_\Gamma\frac{f(z)}{z-\zeta}\,dz$ ($f\in L^n$), $Q=I-P$. The conditions a) and b) are independent. The theorem is applicable to equations of Wiener–Hopf type. Bibliography: 11 titles.
@article{SM_1970_12_3_a3,
     author = {J. Laiterer},
     title = {Criteria for normal solvability of systems of singular integral equations and {Wiener{\textendash}Hopf} equations},
     journal = {Sbornik. Mathematics},
     pages = {387--403},
     year = {1970},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a3/}
}
TY  - JOUR
AU  - J. Laiterer
TI  - Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 387
EP  - 403
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a3/
LA  - en
ID  - SM_1970_12_3_a3
ER  - 
%0 Journal Article
%A J. Laiterer
%T Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations
%J Sbornik. Mathematics
%D 1970
%P 387-403
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a3/
%G en
%F SM_1970_12_3_a3
J. Laiterer. Criteria for normal solvability of systems of singular integral equations and Wiener–Hopf equations. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 387-403. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a3/

[1] I. Ts. Gokhberg, O sistemakh singulyarnykh integralnykh uravnenii, Uchenye zapiski Kishin. Gos. un-ta, 11, 1954

[2] I. Ts. Gokhberg, “Zadachi faktorizatsii v normirovannykh koltsakh, funktsii ot izometricheskikh i simmetricheskikh operatorov i singulyarnye integralnye uravneniya”, Uspekhi matem. nauk, XIX:1(67) (1964), 71–124

[3] Yu. Laiterer, “O normalnoi razreshimosti singulyarnykh integralnykh uravnenii”, Matem. issledovaniya, 5, no. 1, Kishinev, 1970, 152–159 | MR | Zbl

[4] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1965 | MR

[5] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1966 | MR | Zbl

[6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR

[7] Yu. Laiterer, “Ob operatore umnozheniya na nepreryvnuyu matritsu-funktsiyu”, Matem. issledovaniya, 5, no. 2, Kishinev, 1970, 125–144 | MR | Zbl

[8] I. Ts. Gokhberg, I. A. Feldman, Proektsionnye metody resheniya uravnenii Vinera–Khopfa, Kishinev, 1967

[9] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, Moskva, 1968

[10] I. Ts. Gokhberg, A. S. Markus, “Dve teoremy o rastvore podprostranstv banakhova prostranstva”, Uspekhi matem. nauk, XIV:5(89) (1959), 135–140

[11] I. Ts. Gokhberg, N. Ya. Krupnik, “O spektre singulyarnykh integralnykh operatorov v prostranstvakh $I_p$”, Studia Math., XXXI (1968), 347–362