@article{SM_1970_12_3_a2,
author = {V. I. Danilov},
title = {Rings with a~discrete group of divisor classes},
journal = {Sbornik. Mathematics},
pages = {368--386},
year = {1970},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a2/}
}
V. I. Danilov. Rings with a discrete group of divisor classes. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 368-386. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a2/
[1] A. Grothendieck, J. Dieudonne, “Éléments de Géométrie algébrique”, Publ. Math. IHES, Paris, 1960, no. 4 ; 1961, no. 11 ; 1966, no. 24; 1966, no. 28 ; 1967, no. 32 | Zbl | MR | Zbl | MR
[2] H. Burbaki, Algebra. Mnogochleny i polya, uporyadochennye gruppy, Nauka, Moskva, 1965 | MR
[3] V. I. Danilov, “O gipoteze Samyuelya”, Matem. sb., 81(123) (1970), 132–144 | MR | Zbl
[4] V. I. Danilov, “Gruppa klassov idealov popolnennogo koltsa”, Matem. sb., 77(119):4 (1968), 533–541 | MR | Zbl
[5] Kh. Khironaka, “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–71; 10:1 (1966), 3–90 ; 10:2 (1966), 3–59 | MR | MR
[6] D. Mamford, Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, Moskva, 1968
[7] M. Artin, “Nekotorye chislennye kriterii styagivaemosti krivykh na algebraicheskoi poverkhnosti”, Matematika, 9:3 (1965), 3–14 | MR
[8] N. Bourbaki, Algebre commutative. I, II, VII, Hermann, Paris, 1961, 1965
[9] P. Samuel, “On unique factorization domains”, Illinois J. Math., 5:1 (1961), 1–17 | MR | Zbl
[10] P. Samuel, “Anneaux gradues factoriels et modules reflexifs”, Bull. Soc. Math. France, 92 (1964), 237–249 | MR | Zbl
[11] G. Scheja, “Einige Beispiele iactorieller localer Ringe”, Math. Ann., 172:2 (1967), 124–134 | DOI | MR | Zbl
[12] A. Grothendieck, Seminaire de Geometrie algebrique, IHES, Bures-sur-Ivette, 1962
[13] J.-P. Serre, “Sur la topologie des varietes algebrique en caracteristique $p$”, Symp. Internac. de Topoi. Algebr., Mexico, 1956 | MR
[14] H. Hironaka, “On the characters $\nu$ and $\tau$ of singularities”, J. Math. of Kyoto Univ., 7:1 (1967), 19–44 | MR