The refined structure of the N\'eron--Tate height
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 325-342
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains two new results on the height of points on abelian varieties. The first of these is that the height is a special case of a construction involving the quasi-character of the group of idele classes. The usual height yields the “idele modulus”. The second result establishes the existence of a class of canonically restricted heights. Applications to diophantine problems are given.
Bibliography: 12 titles.
@article{SM_1970_12_3_a0,
author = {Yu. I. Manin},
title = {The refined structure of the {N\'eron--Tate} height},
journal = {Sbornik. Mathematics},
pages = {325--342},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a0/}
}
Yu. I. Manin. The refined structure of the N\'eron--Tate height. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 325-342. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a0/