The refined structure of the Néron–Tate height
Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 325-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains two new results on the height of points on abelian varieties. The first of these is that the height is a special case of a construction involving the quasi-character of the group of idele classes. The usual height yields the “idele modulus”. The second result establishes the existence of a class of canonically restricted heights. Applications to diophantine problems are given. Bibliography: 12 titles.
@article{SM_1970_12_3_a0,
     author = {Yu. I. Manin},
     title = {The refined structure of the {N\'eron{\textendash}Tate} height},
     journal = {Sbornik. Mathematics},
     pages = {325--342},
     year = {1970},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_3_a0/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - The refined structure of the Néron–Tate height
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 325
EP  - 342
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_3_a0/
LA  - en
ID  - SM_1970_12_3_a0
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T The refined structure of the Néron–Tate height
%J Sbornik. Mathematics
%D 1970
%P 325-342
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_12_3_a0/
%G en
%F SM_1970_12_3_a0
Yu. I. Manin. The refined structure of the Néron–Tate height. Sbornik. Mathematics, Tome 12 (1970) no. 3, pp. 325-342. http://geodesic.mathdoc.fr/item/SM_1970_12_3_a0/

[1] V. A. Demyanenko, “Ratsionalnye tochki odnogo klassa algebraicheskikh krivykh”, Izv. AN SSSR, seriya matem., 30 (1966), 1373–1396

[2] S. Lang, Les formes bilinéaires de Néron et Tate, Séminaire Bourbaki, 274, no. mai, 1964 | MR | Zbl

[3] S. Lang, Diophantine Geometry, New York, 1962 | MR

[4] Yu. I. Manin, “Vysota Teita tochek na abelevom mnogoobrazii, ee varianty i prilozheniya”, Izv. AN SSSR, seriya matem., 28 (1964), 1387–1414 | MR

[5] H. Morikawa, “Theta functions and abelian varieties over valuations fields of rank one. I”, Nagoya Math. J., 20:62, 1–28 | MR

[6] D. Mumford, “A remark on Mordell's conjecture”, Amer. J. Math., 87:4 (1965), 1007–1016 | DOI | MR | Zbl

[7] A. Neron, “Quasi-fonctions et hauteurs sur les variétés abéliènnes”, Ann. Math., 82:2 (1965), 249–331 | DOI | MR | Zbl

[8] A. H. Parshin, “Izogenii i kruchenie ellipticheskikh krivykh”, Izv. AN SSSR, seriya matem., 34 (1970), 409–424 | Zbl

[9] P. Roquette, Analytic theory of elliptic functions over local fields, Gottingen, 1970 | MR

[10] J. Tate, “Fourier analysis in number fields and Hecke's zeta functions”, Algebraic number theory, Academic Press, London–New York, 1967

[11] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometrie analog, Seminaire Bourbaki, 306, no. fevrier, 1966 | Zbl

[12] A. Weil, “Arithmetic on algebraic varieties”, Ann. Math., 53:3 (1951), 412–441 | DOI | MR