Some properties of surfaces with slowly varying negative extrinsic curvature in a~Riemannian space
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 313-324

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider surfaces of negative extrinsic curvature in a Riemannian space with nonpositive curvature. We prove that the following inequality holds on a surface which is complete in the sense of the intrinsic metric: $$ \sup_F\biggl\{\biggl|\operatorname{grad}\frac1k\biggr|+\frac{\Lambda-\lambda}{2k^2}\biggr\}=q>\frac1{\sqrt3}, $$ here $F$ is the surface being considered, $k=\sqrt{K_e}$ ($K_e$ is the extrinsic curvature of $F$) and $\Lambda$ and $\lambda$ are the maximum and minimum of the Riemannian curvature of the space $R$ at a given point. This theorem generalizes a theorem of Efimov concerning $q$-metrics. We give an example of a surface for which $q=4,5$. Bibliography: 8 titles.
@article{SM_1970_12_2_a9,
     author = {I. S. Brandt},
     title = {Some properties of surfaces with slowly varying negative extrinsic curvature in {a~Riemannian} space},
     journal = {Sbornik. Mathematics},
     pages = {313--324},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a9/}
}
TY  - JOUR
AU  - I. S. Brandt
TI  - Some properties of surfaces with slowly varying negative extrinsic curvature in a~Riemannian space
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 313
EP  - 324
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_2_a9/
LA  - en
ID  - SM_1970_12_2_a9
ER  - 
%0 Journal Article
%A I. S. Brandt
%T Some properties of surfaces with slowly varying negative extrinsic curvature in a~Riemannian space
%J Sbornik. Mathematics
%D 1970
%P 313-324
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_12_2_a9/
%G en
%F SM_1970_12_2_a9
I. S. Brandt. Some properties of surfaces with slowly varying negative extrinsic curvature in a~Riemannian space. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a9/