Some properties of surfaces with slowly varying negative extrinsic curvature in a~Riemannian space
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 313-324
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider surfaces of negative extrinsic curvature in a Riemannian space with nonpositive curvature. We prove that the following inequality holds on a surface which is complete in the sense of the intrinsic metric:
$$
\sup_F\biggl\{\biggl|\operatorname{grad}\frac1k\biggr|+\frac{\Lambda-\lambda}{2k^2}\biggr\}=q>\frac1{\sqrt3},
$$
here $F$ is the surface being considered, $k=\sqrt{K_e}$ ($K_e$ is the extrinsic curvature of $F$) and $\Lambda$ and $\lambda$ are the maximum and minimum of the Riemannian curvature of the space $R$ at a given point.
This theorem generalizes a theorem of Efimov concerning $q$-metrics. We give an example of a surface for which $q=4,5$.
Bibliography: 8 titles.
@article{SM_1970_12_2_a9,
author = {I. S. Brandt},
title = {Some properties of surfaces with slowly varying negative extrinsic curvature in {a~Riemannian} space},
journal = {Sbornik. Mathematics},
pages = {313--324},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a9/}
}
TY - JOUR AU - I. S. Brandt TI - Some properties of surfaces with slowly varying negative extrinsic curvature in a~Riemannian space JO - Sbornik. Mathematics PY - 1970 SP - 313 EP - 324 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_12_2_a9/ LA - en ID - SM_1970_12_2_a9 ER -
I. S. Brandt. Some properties of surfaces with slowly varying negative extrinsic curvature in a~Riemannian space. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a9/