Instability in a Hamiltonian system and the distribution of asteroids
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 271-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formal stability of periodic solutions is investigated for a Hamiltonian system in two degrees of freedom. The nature of the zones of instability is exhibited in the case of a resonance of order $q\geqslant3$. In contrast to classical theory, an isoenergetic reduction is not carried out. This permits unstable solutions close to periodic solutions to be studied in full. The results are applied to the restricted problem of three bodies, which allows us to explain qualitatively the nature of all gaps with $q\geqslant3$ in the distribution of asteroids. Figures: 19. Bibliography: 37 titles.
@article{SM_1970_12_2_a8,
     author = {A. D. Bruno},
     title = {Instability in {a~Hamiltonian} system and the distribution of asteroids},
     journal = {Sbornik. Mathematics},
     pages = {271--312},
     year = {1970},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a8/}
}
TY  - JOUR
AU  - A. D. Bruno
TI  - Instability in a Hamiltonian system and the distribution of asteroids
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 271
EP  - 312
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_2_a8/
LA  - en
ID  - SM_1970_12_2_a8
ER  - 
%0 Journal Article
%A A. D. Bruno
%T Instability in a Hamiltonian system and the distribution of asteroids
%J Sbornik. Mathematics
%D 1970
%P 271-312
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_12_2_a8/
%G en
%F SM_1970_12_2_a8
A. D. Bruno. Instability in a Hamiltonian system and the distribution of asteroids. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 271-312. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a8/

[1] K. L. Zigel, Lektsii po nebesnoi mekhanike, IL, Moskva, 1959

[2] J. Moser, “Stabilitätsverhalten Kanonischer Differentialgleichungssysteme”, Nachr. Akad. Wiss, Cöttingen, Math.-Phys. Kl., 1956, no. 6, 87–120 | MR

[3] T. Levi-Civita, “Sorpa alcuni criteri di instabilita”, Ann. Mat. Pura Appl., 5 (1901), 221–307 | Zbl

[4] Dzh. D. Birkgof, Dinamicheskie sistemy, Gostekhizdat, Moskva–Leningrad, 1941

[5] J. Moser, Lectures on Hamiltonian systems, Memoirs Amer. Math. Soc., 81, 1968 | MR | Zbl

[6] A. D. Bryuno, “O raskhodimosti preobrazovanii differentsialnykh uravnenii k normalnoi forme”, DAN SSSR, 174:5 (1967), 1003–1007 ; “Аналитическая форма дифференциальных уравнений”, Матем. заметки, 6:6 (1969), 771–778

[7] A. D. Bryuno, “Ob ustoichivosti periodicheskikh reshenii sistem Gamiltona”, Mekhanika tverdogo tela, 1969, no. 3, 206; No 6, 150

[8] A. D. Bryuno, Normalnaya forma nelineinykh kolebanii, Preprint (Doklad na V Mezhdun. konf. po nelineinym kolebaniyam), IPM, Moskva, 1969 | MR

[9] J. Moser, “New aspects in the theory of stability of Hamiltonian systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl

[10] A. Deprit, E. Rabe, “Periodic Trojan orbits for the resonance 1/12”, Astron. J., 74:2 (1969), 317–320 | DOI

[11] C. L. Siegel, “Über die Existenz einer Normalform analytscher Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewischtslösung”, Math. Ann., 128 (1954), 144–170 ; Matematika, 5:2 (1961), 129–156 | DOI | MR | Zbl

[12] J. Moser, “Nonexistence of integrals for canonical systems of differential equation”, Comm. Pure Appl. Math., 8:3 (1965), 409–436 | DOI | MR

[13] V. K. Melnikov, “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Trudy Mosk. matem. ob-va, 12 (1963), 1–52

[14] G. A. Merman, “Dvoyako asimptoticheskie resheniya v neavtonomnoi kanonicheskoi sisteme s odnoi stepenyu svobody vblizi rezonansa”, Trudy ITA, 13 (1969), 3–104 | MR

[15] J. Moser, “On the elimination of the irrationaly condition and Birkhoff's concept of complete stability”, Bol. Soc. Mat. Mexicana, 1960, 167–175 | MR | Zbl

[16] A. D. Bryuno, “Normalnaya forma differentsialnykh uravnenii”, DAN SSSR, 157:6 (1964), 1276–1279 | Zbl

[17] J. Glimm, “Formal stability of Hamiltonian systems”, Comm. Pure Apipl. Math., 17:4 (1964), 509–526 | DOI | MR | Zbl

[18] A. D. Bryuno, “O formalnoi ustoichivosti sistem Gamiltona”, Matem. zametki, 1:3 (1967), 325–330 | Zbl

[19] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Sobr. soch., t. 2, AN SSSR, Moskva, 1956 | Zbl

[20] A. Uintner, Analiticheskie osnovy nebesnoi mekhaniki, Nauka, Moskva, 1967

[21] G. Colombo, F. A. Franklin, C. M. Munford, “On a family of Periodic orbits of the restricted threebody problem and the question of the gaps in the asteroid belt and in Saturn's ring.”, Astron. J., 73:2 (1968), 111–123 | DOI | MR

[22] J. Moser, “Periodische Lösungen des restringierten Dreikörperproblems, die sich erst nach vielen Umläufen schliessen”, Math. Ann., 126 (1953), 325–335 | DOI | MR | Zbl

[23] Efemeridy malykh planet na 1969 god, Nauka, Leningrad, 1968

[24] I. I. Putilin, Malye planety, Gostekhizdat, Moskva, 1953

[25] D. Brouwer, “The problem of the Kjrkwood gaps in the asteroid belt”, Astron. J., 68:3 (1963), 162–159 | MR

[26] A. Wintner, “On the periodic analitic continuations of the circular orbits in the restricted problem of three bodies”, Proc. Nat. Acad. Sci. USA, 22:7 (1936), 435–439 | DOI | Zbl

[27] V. Szebehely, Theory of orbits. The restricted problem of three bodies, Academic Press, New York–London, 1967 | Zbl

[28] R. Abraham, Fondations of mechanics, Benjamin, New York, 1967

[29] T. M. Cherry, “On the solution of Hamiltonian systems of differential equations in the neiborhood of a singular point”, Proc. London Math. Soc., 2, 27:2, 3 (1927), 151–170 | Zbl

[30] J. Moser, “Perturbation theory for almost periodic solutions for undamped nonlinear differential equations”, International Symposium on nonlinear diff. eq. and nonlinear mech., Acad. Press, New York, 1963, 71–79 | MR

[31] J. Moser, Stability and nonlinear character of ordinary differential equations Nonlinear problems, eds. R. E. Langer, Madison, 1963 | MR | Zbl

[32] R. B. Barrar, “A new proof of a theorem of J. Moser concerning the restricted problem of three bodies”, Math. Ann., 160:5 (1965), 363–369 | DOI | MR | Zbl

[33] A. Deprit, “Hecuba gap and Hilda group”, Astron. J., 73:8 (1968), 730–731 | DOI

[34] H. Brown, I. Goddard, J. Kane, “Qualitative aspects of asteroid statistics”, Astrophys. J. Suppl, 14 (1967), 57–124 | DOI

[35] F. A. Franklin, G. Colombo, A dinamicai model for the radial structure of Saturn's rings, Icarus, 1970

[36] Yu. V. Batrakov, “O raspredelenii srednikh dvizhenii asteroidov vblizi soizmerimostei”, Byulleten ITA, 6:9(82) (1958), 577–580

[37] O. Blaker, Analiz nelineinykh sistem, Mir, Moskva, 1969 | MR