The modulus method for nonhomeomorphic quasiconformal mappings
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 260-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modulus method is one of the most effective methods in the theory of quasiconformal homeomorphisms. Over the course of a long time there has been no success, however, in applying this method to the analysis of nonhomeomorphic quasiconformal mappings of spatial domains. In the present paper inequalities are established for the moduli of families of curves corresponding with each other under a certain, not necessarily homeomorphic, quasiconformal mapping. These inequalities are applied to the study of the relation of dilatation with the minimal multiplicity of a ramification of such mappings. Bibliography: 7 titles.
@article{SM_1970_12_2_a7,
     author = {E. A. Poletskii},
     title = {The modulus method for nonhomeomorphic quasiconformal mappings},
     journal = {Sbornik. Mathematics},
     pages = {260--270},
     year = {1970},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a7/}
}
TY  - JOUR
AU  - E. A. Poletskii
TI  - The modulus method for nonhomeomorphic quasiconformal mappings
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 260
EP  - 270
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_2_a7/
LA  - en
ID  - SM_1970_12_2_a7
ER  - 
%0 Journal Article
%A E. A. Poletskii
%T The modulus method for nonhomeomorphic quasiconformal mappings
%J Sbornik. Mathematics
%D 1970
%P 260-270
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_12_2_a7/
%G en
%F SM_1970_12_2_a7
E. A. Poletskii. The modulus method for nonhomeomorphic quasiconformal mappings. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 260-270. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a7/

[1] Yu. G. Reshetnyak, “Prostranstvennye otobrazheniya s ogranichennym iskazheniem”, Sib. matem. zh., 8:3 (1967), 629–658 | MR

[2] Yu. G. Reshetnyak, “Ob uslovii ogranichennosti indeksa dlya otobrazhenii s ogranichennym iskazheniem”, Sib. matem. zh., 9:2 (1968), 368–374 | MR

[3] O. Martio, S. Rickman, J. Vaisala, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I, 448, 1969 | MR | Zbl

[4] B. V. Shabat, “Metod modulei v prostranstve”, DAN SSSR, 130:6 (1960), 1210–1215

[5] S. Saks, Teoriya integrala, IL, Moskva, 1949

[6] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[7] D. B. Fuks, Gomotopicheskaya topologiya, MGU, Moskva, 1967