Representation of arbitrary functions by certain special series
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 159-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M(x,t)$ be continuous for $0\leqslant t\leqslant x$, $0\leqslant x\leqslant1$ and let $g(x)$ be of bounded variation in $[0,1]$. Further, let $M(x,t,\lambda)=\sum_{k=0}^\infty\lambda^kM_k(x,t)$, where $M_1(x,t)=M(x,t)$, and $M_k(x,t)=\int_t^xM_{k-1}(x,\tau)M(\tau,t)\,d\tau$ for $k>1$. The paper studies the problem of the representation of a certain class of functions by series whose partial sums are given by $$ P_n(x,f)=\frac1{2\pi i}\int_{C_n}\frac{\varphi(x,\lambda)}{L(\lambda)}\int_0^1\int_0^xM(x,t,\lambda)f(t)\,dt\,dg(x)\qquad(n=1,2,\dots), $$ where $f(x)$ is the expanded function, $\varphi(x,\lambda)=\psi(x)+\lambda\int_0^xM(x,t,\lambda)\psi(t)\,dt$, $\psi(x)\in C[0,1]$, $L(\lambda)=\int_0^1\varphi(x,\lambda)\,dg(x)$ and is $\{C_n\}^\infty_{n=1}$ a sequence of circles in the $\lambda$-plane with common center at zero and radii $r_n\uparrow+\infty$. This problem contains, in particular, the problem of expansion in the eigenfunctions of an ordinary differential equation in $[0,1]$ with certain irregular decomposing boundary conditions. Bibliography: 5 titles.
@article{SM_1970_12_2_a1,
     author = {A. P. Khromov},
     title = {Representation of arbitrary functions by certain special series},
     journal = {Sbornik. Mathematics},
     pages = {159--176},
     year = {1970},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a1/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - Representation of arbitrary functions by certain special series
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 159
EP  - 176
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_2_a1/
LA  - en
ID  - SM_1970_12_2_a1
ER  - 
%0 Journal Article
%A A. P. Khromov
%T Representation of arbitrary functions by certain special series
%J Sbornik. Mathematics
%D 1970
%P 159-176
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_12_2_a1/
%G en
%F SM_1970_12_2_a1
A. P. Khromov. Representation of arbitrary functions by certain special series. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 159-176. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a1/

[1] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[2] M. A. Naimark, Lineinye differentsialnye operatory, Fizmatgiz, Moskva, 1969 | MR

[3] A. P. Khromov, “Razlozhenie po sobstvennym funktsiyam obyknovennykh lineinykh differentsialnykh operatorov s nergulyatornymi raspadayuschimisya kraevymi usloviyami”, Matem. sb., 70(112) (1966), 310–329

[4] A. F. Leontev, “K voprosu o predstavlenii proizvolnykh funktsii nekotorymi obschimi ryadami”, Matem. zametki, 1:6 (1967), 689–698 | MR

[5] M. K. Fage, “Operatorno-analiticheskie funktsii odnoi nezavisimoi peremennoi”, Trudy Mosk. matem. ob-va, VII (1956), 227–268 | MR