Representation of arbitrary functions by certain special series
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 159-176
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M(x,t)$ be continuous for $0\leqslant t\leqslant x$, $0\leqslant x\leqslant1$ and let $g(x)$ be of bounded variation in $[0,1]$. Further, let $M(x,t,\lambda)=\sum_{k=0}^\infty\lambda^kM_k(x,t)$, where $M_1(x,t)=M(x,t)$, and $M_k(x,t)=\int_t^xM_{k-1}(x,\tau)M(\tau,t)\,d\tau$ for $k>1$. The paper studies the problem of the representation of a certain class of functions by series whose partial sums are given by
$$
P_n(x,f)=\frac1{2\pi i}\int_{C_n}\frac{\varphi(x,\lambda)}{L(\lambda)}\int_0^1\int_0^xM(x,t,\lambda)f(t)\,dt\,dg(x)\qquad(n=1,2,\dots),
$$
where $f(x)$ is the expanded function, $\varphi(x,\lambda)=\psi(x)+\lambda\int_0^xM(x,t,\lambda)\psi(t)\,dt$, $\psi(x)\in C[0,1]$, $L(\lambda)=\int_0^1\varphi(x,\lambda)\,dg(x)$ and is $\{C_n\}^\infty_{n=1}$ a sequence of circles in the $\lambda$-plane with common center at zero and radii $r_n\uparrow+\infty$. This problem contains, in particular, the problem of expansion in the eigenfunctions of an ordinary differential equation in $[0,1]$ with certain irregular decomposing boundary conditions.
Bibliography: 5 titles.
@article{SM_1970_12_2_a1,
author = {A. P. Khromov},
title = {Representation of arbitrary functions by certain special series},
journal = {Sbornik. Mathematics},
pages = {159--176},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a1/}
}
A. P. Khromov. Representation of arbitrary functions by certain special series. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 159-176. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a1/