On symplectic cobordisms
Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 77-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article, the method of spherical reconstructions of smooth manifolds is applied to the computation of some groups of symplectic cobordisms. Namely, it is proved that $\Omega^5_{Sp}=Z_2$, $\Omega^6_{Sp}=Z_2$, $\Omega^7_{Sp}=0$. The indicated values of the groups of cobordisms for dimensions 5 and 6 are known and follow from arguments of the Adams spectral sequence for $S_p$-cobordisms. The new result is the fact that the seventh group of cobordisms equals 0. This is the fundamental result of the article. The theorem concerning the reconstruction of manifolds with a quasisymplectic structure in the normal bundle, which is proved in the article, and the theorem on integer values of Atiyah–Hirzebruch constitute the basis for the proof. Bibliography: 6 titles.
@article{SM_1970_12_1_a4,
     author = {V. R. Kireitov},
     title = {On~symplectic cobordisms},
     journal = {Sbornik. Mathematics},
     pages = {77--89},
     year = {1970},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/}
}
TY  - JOUR
AU  - V. R. Kireitov
TI  - On symplectic cobordisms
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 77
EP  - 89
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/
LA  - en
ID  - SM_1970_12_1_a4
ER  - 
%0 Journal Article
%A V. R. Kireitov
%T On symplectic cobordisms
%J Sbornik. Mathematics
%D 1970
%P 77-89
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/
%G en
%F SM_1970_12_1_a4
V. R. Kireitov. On symplectic cobordisms. Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/

[1] R. Bott, “$K$-teoriya”, Matematika, 11:2 (1967), 32–56 | MR

[2] R. Bott, “The stable homotopy of the classical groups”, Ann. Math., 70 (1959), 313–337 | DOI | MR | Zbl

[3] Dzh. Milnor, “Lektsiya o kharakteristicheskikh klassakh”, Matematika, 1965, no. 4, 3–40

[4] J. Milnor, “Remarks concerning Spin manifolds”, Differential and combinatorial topology, Princeton University Press, Princeton–New Jersey, 1965 | MR

[5] S. P. Novikov, “Gomotopicheskie ekvivalentnye gladkie mnogoobraziya”, Izv. AN SSSR, seriya matem., 28:2 (1964), 365–474 | MR

[6] F. Khirtsebrukh, “Kompleksnye mnogoobraziya”, Mezhdunarodnyi matematicheskii kongress v Edinburge, Fizmatgiz, Moskva, 1962