On~symplectic cobordisms
Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 77-89

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, the method of spherical reconstructions of smooth manifolds is applied to the computation of some groups of symplectic cobordisms. Namely, it is proved that $\Omega^5_{Sp}=Z_2$, $\Omega^6_{Sp}=Z_2$, $\Omega^7_{Sp}=0$. The indicated values of the groups of cobordisms for dimensions 5 and 6 are known and follow from arguments of the Adams spectral sequence for $S_p$-cobordisms. The new result is the fact that the seventh group of cobordisms equals 0. This is the fundamental result of the article. The theorem concerning the reconstruction of manifolds with a quasisymplectic structure in the normal bundle, which is proved in the article, and the theorem on integer values of Atiyah–Hirzebruch constitute the basis for the proof. Bibliography: 6 titles.
@article{SM_1970_12_1_a4,
     author = {V. R. Kireitov},
     title = {On~symplectic cobordisms},
     journal = {Sbornik. Mathematics},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/}
}
TY  - JOUR
AU  - V. R. Kireitov
TI  - On~symplectic cobordisms
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 77
EP  - 89
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/
LA  - en
ID  - SM_1970_12_1_a4
ER  - 
%0 Journal Article
%A V. R. Kireitov
%T On~symplectic cobordisms
%J Sbornik. Mathematics
%D 1970
%P 77-89
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/
%G en
%F SM_1970_12_1_a4
V. R. Kireitov. On~symplectic cobordisms. Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 77-89. http://geodesic.mathdoc.fr/item/SM_1970_12_1_a4/