Modules of differentials of the Atiyah--Hirzebruch spectral sequence.~II
Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 59-75
Voir la notice de l'article provenant de la source Math-Net.Ru
The subject of the article is the Atiyah–Hirzebruch spectral-sequence method in $K$-theory. In particular, one of the results is the definitive solution (in terms of homology groups) of the problem of realizing the cycles of a manifold by submanifolds, and a formula is given that connects the higher differentials of the spectral sequence with the Steenrod powers.
Bibliography: 21 titles.
@article{SM_1970_12_1_a3, author = {V. M. Buchstaber}, title = {Modules of differentials of the {Atiyah--Hirzebruch} spectral {sequence.~II}}, journal = {Sbornik. Mathematics}, pages = {59--75}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {1970}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_1970_12_1_a3/} }
V. M. Buchstaber. Modules of differentials of the Atiyah--Hirzebruch spectral sequence.~II. Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 59-75. http://geodesic.mathdoc.fr/item/SM_1970_12_1_a3/