Categories structurally equivalent to categories of algebras
Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conditions are investigated for an arbitrary category to be structurally equivalent in the sense of Mal'tscev to a class of universal algebras closed with respect to one or another algebraic construction. Conditions are determined under which the operations of the algebras can be taken to be finitary. Bibliography: 9 titles.
@article{SM_1970_12_1_a0,
     author = {T. M. Baranovich},
     title = {Categories structurally equivalent to categories of algebras},
     journal = {Sbornik. Mathematics},
     pages = {1--12},
     year = {1970},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_1_a0/}
}
TY  - JOUR
AU  - T. M. Baranovich
TI  - Categories structurally equivalent to categories of algebras
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 1
EP  - 12
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_1_a0/
LA  - en
ID  - SM_1970_12_1_a0
ER  - 
%0 Journal Article
%A T. M. Baranovich
%T Categories structurally equivalent to categories of algebras
%J Sbornik. Mathematics
%D 1970
%P 1-12
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1970_12_1_a0/
%G en
%F SM_1970_12_1_a0
T. M. Baranovich. Categories structurally equivalent to categories of algebras. Sbornik. Mathematics, Tome 12 (1970) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/SM_1970_12_1_a0/

[1] A I. Maltsev, “Strukturnaya kharakteristika nekotorykh klassov algebr”, DAN SSSR, 120:1 (1958), 29–32

[2] A. I. Maltsev, “O nekotorykh klassakh modelei”, DAN SSSR, 120:2 (1958), 245–248

[3] G. E. Rivlin, “Kharakterizatsiya kategorii kvaziprimitivnogo klassa universalnykh algebr i ee sootvetstvii”, Matem. sb., 82(124) (1970), 72–83 | MR | Zbl

[4] M. Sh. Tsalenko, “Funktory mezhdu strukturizovannymi kategoriyami”, Matem. sb., 80(112) (1960), 533–552

[5] J. R. Isbell, “Subobjects, adequacy, completeness and categories of algebras”, Rozpr. Math., 36 (1964), 3–36 | MR

[6] W. Felsher, “Kennzeichnung von primitiven und quasiprimitiven Kategorien von Algebren”, Archiv Math., 19 (1968), 390–397 | DOI | MR

[7] P. Kon, Universalnaya algebra, Mir, Moskva, 1968 | MR

[8] F. W. Lawere, “Functorial semantics of algebraic theories”, Proc. Nat. Acad. Sci. USA, 50:5 (1963), 869–872 | DOI | MR

[9] P. J. Higgins, “Algebras with a scheme of operators”, Math. Nachr., 27 (1963), 115–132 | DOI | MR | Zbl