On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series
Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 529-538

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L(\lambda)=\displaystyle\sum_{k=0}^\infty c_k\lambda^k$ be an entire function of order $\rho_1$ ($1\rho_12$). We denote by $\lambda_1,\lambda_2,\dots,\lambda_n,\dots$ the zeros of the function $L(\lambda)$. It is assumed that all the zeros of the function $L(\lambda)$ are simple, and that $\lim_{n\to\infty}\frac n{\lambda_n^{\rho_1}}=\tau\ne0,\infty$. We take an arbitrary function $F(z)=\sum_{n=0}^\infty b_nz^n$ of order $\nu\frac{\rho_1}{\rho_1-1}$. We associate with the function $F(z)$ the series \begin{equation} F(z)\thicksim\sum_{n=1}^\infty A_ne^{\lambda_nz},\qquad A_n=\frac{\omega_L(\lambda_n,F)}{L'(\lambda_n)}, \end{equation} where $$ \omega_L(u,\,F)=\sum_{k=1}^\infty c_k[F^{(k-1)}(0)+uF^{(k-2)}(0)+\ldots+u^{k-1}F(0)]. $$ The series (1) is, in general, divergent. In particular, the series (1) can converge absolutely and uniformly throughout the plane, but not to the function $F(z)$. In the present paper a method is indicated for the reconstruction of the function $F(z)$ from the known coefficients $A_n$ ($n=1,2,\dots$) of (1). Bibliography: 6 titles.
@article{SM_1970_11_4_a3,
     author = {V. I. Shevtsov},
     title = {On~the reconstruction of a~function from the known coefficients of the corresponding {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {529--538},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/}
}
TY  - JOUR
AU  - V. I. Shevtsov
TI  - On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 529
EP  - 538
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/
LA  - en
ID  - SM_1970_11_4_a3
ER  - 
%0 Journal Article
%A V. I. Shevtsov
%T On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series
%J Sbornik. Mathematics
%D 1970
%P 529-538
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/
%G en
%F SM_1970_11_4_a3
V. I. Shevtsov. On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series. Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 529-538. http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/