On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series
Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 529-538
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L(\lambda)=\displaystyle\sum_{k=0}^\infty c_k\lambda^k$ be an entire function of order $\rho_1$ ($1\rho_12$). We denote by $\lambda_1,\lambda_2,\dots,\lambda_n,\dots$ the zeros of the function $L(\lambda)$. It is assumed that all the zeros of the function $L(\lambda)$ are simple, and that $\lim_{n\to\infty}\frac n{\lambda_n^{\rho_1}}=\tau\ne0,\infty$.
We take an arbitrary function $F(z)=\sum_{n=0}^\infty b_nz^n$ of order $\nu\frac{\rho_1}{\rho_1-1}$. We associate with the function $F(z)$ the series
\begin{equation}
F(z)\thicksim\sum_{n=1}^\infty A_ne^{\lambda_nz},\qquad A_n=\frac{\omega_L(\lambda_n,F)}{L'(\lambda_n)},
\end{equation}
where
$$
\omega_L(u,\,F)=\sum_{k=1}^\infty c_k[F^{(k-1)}(0)+uF^{(k-2)}(0)+\ldots+u^{k-1}F(0)].
$$
The series (1) is, in general, divergent. In particular, the series (1) can converge absolutely and uniformly throughout the plane, but not to the function $F(z)$. In the present paper a method is indicated for the reconstruction of the function $F(z)$ from the known coefficients $A_n$ ($n=1,2,\dots$) of (1).
Bibliography: 6 titles.
@article{SM_1970_11_4_a3,
author = {V. I. Shevtsov},
title = {On~the reconstruction of a~function from the known coefficients of the corresponding {Dirichlet} series},
journal = {Sbornik. Mathematics},
pages = {529--538},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/}
}
TY - JOUR AU - V. I. Shevtsov TI - On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series JO - Sbornik. Mathematics PY - 1970 SP - 529 EP - 538 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/ LA - en ID - SM_1970_11_4_a3 ER -
V. I. Shevtsov. On~the reconstruction of a~function from the known coefficients of the corresponding Dirichlet series. Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 529-538. http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/