On the reconstruction of a function from the known coefficients of the corresponding Dirichlet series
Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 529-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $L(\lambda)=\displaystyle\sum_{k=0}^\infty c_k\lambda^k$ be an entire function of order $\rho_1$ ($1<\rho_1<2$). We denote by $\lambda_1,\lambda_2,\dots,\lambda_n,\dots$ the zeros of the function $L(\lambda)$. It is assumed that all the zeros of the function $L(\lambda)$ are simple, and that $\lim_{n\to\infty}\frac n{\lambda_n^{\rho_1}}=\tau\ne0,\infty$. We take an arbitrary function $F(z)=\sum_{n=0}^\infty b_nz^n$ of order $\nu<\frac{\rho_1}{\rho_1-1}$. We associate with the function $F(z)$ the series \begin{equation} F(z)\thicksim\sum_{n=1}^\infty A_ne^{\lambda_nz},\qquad A_n=\frac{\omega_L(\lambda_n,F)}{L'(\lambda_n)}, \end{equation} where $$ \omega_L(u,\,F)=\sum_{k=1}^\infty c_k[F^{(k-1)}(0)+uF^{(k-2)}(0)+\ldots+u^{k-1}F(0)]. $$ The series (1) is, in general, divergent. In particular, the series (1) can converge absolutely and uniformly throughout the plane, but not to the function $F(z)$. In the present paper a method is indicated for the reconstruction of the function $F(z)$ from the known coefficients $A_n$ ($n=1,2,\dots$) of (1). Bibliography: 6 titles.
@article{SM_1970_11_4_a3,
     author = {V. I. Shevtsov},
     title = {On~the reconstruction of a~function from the known coefficients of the corresponding {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {529--538},
     year = {1970},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/}
}
TY  - JOUR
AU  - V. I. Shevtsov
TI  - On the reconstruction of a function from the known coefficients of the corresponding Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 529
EP  - 538
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/
LA  - en
ID  - SM_1970_11_4_a3
ER  - 
%0 Journal Article
%A V. I. Shevtsov
%T On the reconstruction of a function from the known coefficients of the corresponding Dirichlet series
%J Sbornik. Mathematics
%D 1970
%P 529-538
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/
%G en
%F SM_1970_11_4_a3
V. I. Shevtsov. On the reconstruction of a function from the known coefficients of the corresponding Dirichlet series. Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 529-538. http://geodesic.mathdoc.fr/item/SM_1970_11_4_a3/

[1] A. F. Leontev, “O predstavlenii tselykh funktsii nekotorymi obschimi ryadami”, Matem. sb., 71(113) (1966), 3–13 | MR

[2] A. F. Leontev, “K voprosu o predstavlenii proizvolnykh tselykh funktsii ryadami Dirikhle i drugimi bolee obschimi ryadami”, Izv. AN ArmSSR, Matematika, 2:5 (1967), 295–317 | MR

[3] V. I. Shevtsov, “O predstavlenii tselykh funktsii ryadami $\sum_{n=1}^\infty d_nf(\lambda_nz)$”, Matem. zametki, 4:5 (1968), 579–588 | Zbl

[4] V. I. Shevtsov, “O predstavlenii tselykh funktsii nekotorymi obschimi ryadami”, Izv. AN ArmSSR, Matematika, 3:2 (1968), 101–125 | MR | Zbl

[5] I. I. Repin, “O posledovatelnosti lineinykh agregatov analiticheskikh funktsii, ravnomerno ogranichennykh po rostu”, Matem. sb., 36(78) (1955), 3–24 | MR | Zbl

[6] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Fizmatgiz, Moskva, 1956