On~the smoothness of the solutions of boundary value problems for parabolic and degenerate elliptic equations
Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 507-528
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the question of smoothness for solutions of the first and second boundary problems for a class of degenerate equations (including, in particular, a parabolic equation) in domains with boundaries containing characteristic points.
In the case of tangency of higher degree of the boundary with a characteristic plane conditions are given which guarantee that the solution belongs to the space $H_p$.
Bibliography: 9 titles.
@article{SM_1970_11_4_a2,
author = {V. I. Feigin},
title = {On~the smoothness of the solutions of boundary value problems for parabolic and degenerate elliptic equations},
journal = {Sbornik. Mathematics},
pages = {507--528},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_4_a2/}
}
TY - JOUR AU - V. I. Feigin TI - On~the smoothness of the solutions of boundary value problems for parabolic and degenerate elliptic equations JO - Sbornik. Mathematics PY - 1970 SP - 507 EP - 528 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_4_a2/ LA - en ID - SM_1970_11_4_a2 ER -
V. I. Feigin. On~the smoothness of the solutions of boundary value problems for parabolic and degenerate elliptic equations. Sbornik. Mathematics, Tome 11 (1970) no. 4, pp. 507-528. http://geodesic.mathdoc.fr/item/SM_1970_11_4_a2/