Convolution equations in a halfspace
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 441-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a necessary and sufficient condition is found for a function $\widetilde A(\xi)$ to have a factorization such that both factors are bounded from above and from below by power functions; an easily verifiable sufficient condition is also given. Further, the limits of validity of the Wiener–Hopf method are shown for equations in a halfspace with kernel depending on the difference of the arguments. Bibliography: 14 titles.
@article{SM_1970_11_3_a9,
     author = {A. I. Shnirel'man},
     title = {Convolution equations in a~halfspace},
     journal = {Sbornik. Mathematics},
     pages = {441--457},
     year = {1970},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a9/}
}
TY  - JOUR
AU  - A. I. Shnirel'man
TI  - Convolution equations in a halfspace
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 441
EP  - 457
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a9/
LA  - en
ID  - SM_1970_11_3_a9
ER  - 
%0 Journal Article
%A A. I. Shnirel'man
%T Convolution equations in a halfspace
%J Sbornik. Mathematics
%D 1970
%P 441-457
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_11_3_a9/
%G en
%F SM_1970_11_3_a9
A. I. Shnirel'man. Convolution equations in a halfspace. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 441-457. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a9/

[1] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, Moskva, 1958

[2] G. E. Shilov, Matematicheskii analiz (vtoroi spetsialnyi kurs), Nauka, Moskva, 1965 | MR

[3] M. G. Krein, “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi matem. nauk, XIII:5(83) (1958), 3–120 | MR

[4] L. S. Goldenshtein, I. Ts. Gokhberg, “O mnogomernom integralnom uravnenii na poluprostranstve s yadrom, zavisyaschim ot raznosti argumentov, i ego diskretnom analoge”, DAN SSSR, 131:1 (1960), 9–12

[5] M. I. Vishik, G. P. Eskin, “Uravneniya v svertkakh v ogranichennoi oblasti”, Uspekhi matem. nauk, XX:3(123) (1965), 89–152

[6] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, Moskva, 1969 | MR

[7] F. D. Gakhov, Kraevye zadachi, Fizmatgiz, Moskva, 1958

[8] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, IL, Moskva, 1948

[9] Dzh. Littlvud, Matematicheskaya smes, Fizmatgiz, Moskva, 1962

[10] E. M. Stein, “Note on singular integrals”, Proc. Amer. Math. Soc., 8:2 (1967), 150–154 | MR

[11] K. I. Babenko, “O sopryazhennykh funktsiyakh”, DAN SSSR, 62:2 (1948), 157–160 | MR | Zbl

[12] M. I. Vishik, G. I. Eskin, “Ellipticheskie uravneniya v svertkakh v ogranichennoi oblasti i ikh prilozheniya”, Uspekhi matem. nauk, XXII:1(133) (1967), 15–75

[13] L. R. Volevich, B. P. Paneyakh, “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, Uspekhi matem. nauk, XX:1(121) (1965), 3–74

[14] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi oblasti, Nauka, Moskva, 1964 | MR