Projective representations of finite groups over number rings
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 391-410

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem of finding the number $n(R,G)$ of nondecomposable projective representations of a finite group $G$ over the ring $R$ of all integers of a finite extension $F$ of the field of rational $p$-adic numbers $Q$. Also we clear up the question as to when all indecomposable projective $R$-representations of a group $G$ are realized by left ideals of crossed group rings of the group $G$ and the ring $R$. We note that for ordinary $R$-representations of a group $G$ the problem of the finiteness of the number $n(R,G)$ was investigated by S. D. Berman, I. Reiner, A. Heller, H. Yacobinski and one of the authors of the present article. Bibliography: 30 titles.
@article{SM_1970_11_3_a6,
     author = {L. F. Barannik and P. M. Gudivok},
     title = {Projective representations of finite groups over number rings},
     journal = {Sbornik. Mathematics},
     pages = {391--410},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a6/}
}
TY  - JOUR
AU  - L. F. Barannik
AU  - P. M. Gudivok
TI  - Projective representations of finite groups over number rings
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 391
EP  - 410
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a6/
LA  - en
ID  - SM_1970_11_3_a6
ER  - 
%0 Journal Article
%A L. F. Barannik
%A P. M. Gudivok
%T Projective representations of finite groups over number rings
%J Sbornik. Mathematics
%D 1970
%P 391-410
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_3_a6/
%G en
%F SM_1970_11_3_a6
L. F. Barannik; P. M. Gudivok. Projective representations of finite groups over number rings. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 391-410. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a6/