Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 377-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The search for such regions is equivalent to the search for certain subalgebras in the Lie algebra of the group of transformations of a homogeneous space. The latter problem is solved for homogeneous spaces compared in a definite way with semisimple Jordan algebras. By a sequence of reductions, the problem is reduced to finding certain linear mappings of the Jordan algebra into itself. Conditions characterizing these mappings are obtained. Geometric consequences are given. Bibliography: 10 titles.
@article{SM_1970_11_3_a5,
     author = {A. A. Rivilis},
     title = {Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple {Jordan} algebras},
     journal = {Sbornik. Mathematics},
     pages = {377--389},
     year = {1970},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a5/}
}
TY  - JOUR
AU  - A. A. Rivilis
TI  - Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 377
EP  - 389
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a5/
LA  - en
ID  - SM_1970_11_3_a5
ER  - 
%0 Journal Article
%A A. A. Rivilis
%T Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras
%J Sbornik. Mathematics
%D 1970
%P 377-389
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_11_3_a5/
%G en
%F SM_1970_11_3_a5
A. A. Rivilis. Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 377-389. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a5/

[1] I. L. Kantor, “Tranzitivno-differentsialnye gruppy Li”, Trudy seminara po vektornomu i tenzornomu analizu, XIII (1966), 310–398 | MR

[2] A. A. Rivilis, “Odnorodnye lokalno simmetricheskie oblasti v konformnom prostranstve”, DAN SSSR, 184:3 (1969), 558–561 | MR | Zbl

[3] I. L. Kantor, A. I. Sirota, A. S. Solodovnikov, “Odin klass simmetricheskikh prostranstv s rasshiryaemoi gruppoi dvizhenii i obobschenie modeli Puankare”, DAN SSSR, 173:3 (1967), 511–514 | MR | Zbl

[4] M. Koecher, “Imbedding of Jordan algebras into Lie algebras. I”, Arner. J. Math., 89:3 (1967), 787–816 | DOI | MR | Zbl

[5] K. Nomizu, “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl

[6] H. Braun, M. Koecher, Jordan-Algebren, Springer-Verlag, Berlin, 1966 | MR

[7] N. Jacobson, “Nilpotent elements in semi-simple Jordan algebras”, Math. Ann., 136:4 (1958), 375–386 | DOI | MR | Zbl

[8] N. Jacobson, “Some groups of transformations, defined by Jordan algebras. I”, J. Reine Angew. Math., 201:3–4 (1959), 178–195 | MR | Zbl

[9] T. Nagano, “Transformation groups on compact symmetric spaces”, Trans. Amer. Math. Soc., 118:6 (1965), 428–453 | DOI | MR | Zbl

[10] S. Kobayashi, T. Nagano, “On filtered Lie algebras and geometric structures. II”, J. Math. and Mech., 14:3 (1966), 513–521 | MR | Zbl