Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 377-389
Voir la notice de l'article provenant de la source Math-Net.Ru
The search for such regions is equivalent to the search for certain subalgebras in the Lie algebra of the group of transformations of a homogeneous space. The latter problem is solved for homogeneous spaces compared in a definite way with semisimple Jordan algebras. By a sequence of reductions, the problem is reduced to finding certain linear mappings of the Jordan algebra into itself. Conditions characterizing these mappings are obtained. Geometric consequences are given.
Bibliography: 10 titles.
@article{SM_1970_11_3_a5,
author = {A. A. Rivilis},
title = {Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple {Jordan} algebras},
journal = {Sbornik. Mathematics},
pages = {377--389},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a5/}
}
TY - JOUR AU - A. A. Rivilis TI - Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras JO - Sbornik. Mathematics PY - 1970 SP - 377 EP - 389 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a5/ LA - en ID - SM_1970_11_3_a5 ER -
A. A. Rivilis. Homogeneous locally symmetric regions in homogeneous spaces associated with semisimple Jordan algebras. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 377-389. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a5/