On imbedding theorems for symmetric spaces
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 339-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this report there are established embedding theorems for spaces of functions $u(x_1,\dots,x_n)$ whose generalized derivatives lie in a symmetric space $P(\Omega)$. There are found conditions for separability and reflexivity of the spaces $W^r_p(\Omega)$, and the question of the continuity and complete continuity of the embedding operator of $W^r_p(\Omega)$ into various spaces of functionals is studied. Under certain additional restrictions on the region $\Omega$ and the space $P$, there are proved embedding theorems for the spaces $W^r_p$. Bibliography: 19 titles.
@article{SM_1970_11_3_a3,
     author = {V. S. Klimov},
     title = {On~imbedding theorems for symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {339--353},
     year = {1970},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On imbedding theorems for symmetric spaces
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 339
EP  - 353
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/
LA  - en
ID  - SM_1970_11_3_a3
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On imbedding theorems for symmetric spaces
%J Sbornik. Mathematics
%D 1970
%P 339-353
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/
%G en
%F SM_1970_11_3_a3
V. S. Klimov. On imbedding theorems for symmetric spaces. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 339-353. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/

[1] V. G. Mazya, “Klassy oblastei i teoremy vlozheniya”, DAN SSSR, 133:3 (1960), 527–530

[2] V. G. Mazya, “$p$-provodimost i teoremy vlozheniya nekotorykh funktsionalnykh prostranstv v prostranstvo $C$”, DAN SSSR, 140:2 (1961), 299–303

[3] P. P. Zabreiko, “Nelineinye integralnye operatory”, Trudy seminara po funktsionalnomu analizu, 1966, no. 8, 3–148 | MR

[4] E. M. Semenov, “Teoremy vlozheniya dlya banakhovykh prostranstv izmerimykh funktsii”, DAN SSSR, 156:6 (1964), 1292–1295 | Zbl

[5] E. M. Semenov, “Odna novaya interpolyatsionnaya teorema”, Funkts. analiz, 2:2 (1968), 68–80 | MR | Zbl

[6] E. M. Semenov, Interpolyatsiya lineinykh operatorov v simmetrichnykh prostranstvakh, Dissertatsiya, Voronezh, 1968

[7] E. M. Semenov, “Ob odnom metode polucheniya interpolyatsionnykh teorem v simmetrichnykh prostranstvakh”, DAN SSSR, 185:6 (1969), 1243–1246 | Zbl

[8] V. S. Klimov, “Teoremy vlozheniya dlya simmetrichnykh prostranstv”, Matem. sb., 79(121):2(6) (1969), 171–178 | MR | Zbl

[9] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, Leningrad, 1950

[10] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, Moskva, 1962

[11] E. Galyardo, “Svoistva nekotorykh klassov funktsii mnogikh peremennykh”, Matematika, 5:4 (1961), 86–116

[12] G. G. Khardi, Dzh. Littlvud, G. Polia, Neravenstva, IL, Moskva, 1948

[13] A. S. Kronrod, “O funktsiyakh dvukh peremennykh”, Uspekhi matem. nauk, 5:1(35) (1950), 24–134 | MR | Zbl

[14] G. G. Lorenz, “On the theory of spaces $\Lambda$”, Pacific J. Math., 1 (1951), 421–430 | MR

[15] W. A. Luxemburg, A. C. Zaanen, “Notes on Banach function spaces”, Proc. Acad. Sci. Amsterdam, 66 (1963), 655–681 | MR

[16] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Fizmatgiz, Moskva, 1966 | MR

[17] V. A. Dikarev, “Teoremy vlozheniya dlya odnogo klassa funktsionalnykh prostranstv”, DAN SSSR, 168:6 (1966), 1239–1241 | MR | Zbl

[18] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, Moskva, 1958

[19] S. I. Pokhozhaev, “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | MR | Zbl