On~imbedding theorems for symmetric spaces
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 339-353
Voir la notice de l'article provenant de la source Math-Net.Ru
In this report there are established embedding theorems for spaces of functions $u(x_1,\dots,x_n)$ whose generalized derivatives lie in a symmetric space $P(\Omega)$. There are found conditions for separability and reflexivity of the spaces $W^r_p(\Omega)$, and the question of the continuity and complete continuity of the embedding operator of $W^r_p(\Omega)$ into various spaces of functionals is studied. Under certain additional restrictions on the region $\Omega$ and the space $P$, there are proved embedding theorems for the spaces $W^r_p$.
Bibliography: 19 titles.
@article{SM_1970_11_3_a3,
author = {V. S. Klimov},
title = {On~imbedding theorems for symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {339--353},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/}
}
V. S. Klimov. On~imbedding theorems for symmetric spaces. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 339-353. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/