On~imbedding theorems for symmetric spaces
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 339-353

Voir la notice de l'article provenant de la source Math-Net.Ru

In this report there are established embedding theorems for spaces of functions $u(x_1,\dots,x_n)$ whose generalized derivatives lie in a symmetric space $P(\Omega)$. There are found conditions for separability and reflexivity of the spaces $W^r_p(\Omega)$, and the question of the continuity and complete continuity of the embedding operator of $W^r_p(\Omega)$ into various spaces of functionals is studied. Under certain additional restrictions on the region $\Omega$ and the space $P$, there are proved embedding theorems for the spaces $W^r_p$. Bibliography: 19 titles.
@article{SM_1970_11_3_a3,
     author = {V. S. Klimov},
     title = {On~imbedding theorems for symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {339--353},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On~imbedding theorems for symmetric spaces
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 339
EP  - 353
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/
LA  - en
ID  - SM_1970_11_3_a3
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On~imbedding theorems for symmetric spaces
%J Sbornik. Mathematics
%D 1970
%P 339-353
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/
%G en
%F SM_1970_11_3_a3
V. S. Klimov. On~imbedding theorems for symmetric spaces. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 339-353. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a3/