Linear representations of groups generated by reflections
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 459-463

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved: two groups $\Gamma_1$ and $\Gamma_2$ acting discretely on $\Lambda^3$, with compact factor-space and isomorphic, as abstract groups, to a group generated by reflections, are conjugate in the group of motions of $\Lambda^3:g\Gamma_1g^{-1}=\Gamma_2$. Bibliography: 8 titles.
@article{SM_1970_11_3_a10,
     author = {O. V. Schwarzman},
     title = {Linear representations of groups generated by reflections},
     journal = {Sbornik. Mathematics},
     pages = {459--463},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a10/}
}
TY  - JOUR
AU  - O. V. Schwarzman
TI  - Linear representations of groups generated by reflections
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 459
EP  - 463
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a10/
LA  - en
ID  - SM_1970_11_3_a10
ER  - 
%0 Journal Article
%A O. V. Schwarzman
%T Linear representations of groups generated by reflections
%J Sbornik. Mathematics
%D 1970
%P 459-463
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_3_a10/
%G en
%F SM_1970_11_3_a10
O. V. Schwarzman. Linear representations of groups generated by reflections. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 459-463. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a10/