Nondegenerate subelliptic pseudodifferential operators
Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 291-309

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study scalar pseudodifferential operators for which the gradient $\operatorname{grad}_{x,\xi}p^0(x,\xi)$ of the principal part of the symbol does not vanish and is not proportional to a real vector at any characteristic point $(x,\xi)\in\Omega\times\{\mathbf R^n\setminus0\}$. Such operators are called nondegenerate. It is assumed in addition that for each point of $\Omega\times\{\mathbf R^n\setminus0\}$ there exists an operator in the Lie algebra generated by the operators $P$ and $P^*$ the principal part of the symbol of which does not vanish at this point. For these operators we present here hypoellipticity conditions, conditions for the local solvability of the equation $Pu=f$, a theorem on the smoothness of the solutions of this equation, and so on. All of the conditions obtained have a simple algebraic character and are exact, necessary and sufficient. Bibliography: 13 titles.
@article{SM_1970_11_3_a0,
     author = {Yu. V. Egorov},
     title = {Nondegenerate subelliptic pseudodifferential operators},
     journal = {Sbornik. Mathematics},
     pages = {291--309},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_3_a0/}
}
TY  - JOUR
AU  - Yu. V. Egorov
TI  - Nondegenerate subelliptic pseudodifferential operators
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 291
EP  - 309
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_3_a0/
LA  - en
ID  - SM_1970_11_3_a0
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%T Nondegenerate subelliptic pseudodifferential operators
%J Sbornik. Mathematics
%D 1970
%P 291-309
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_3_a0/
%G en
%F SM_1970_11_3_a0
Yu. V. Egorov. Nondegenerate subelliptic pseudodifferential operators. Sbornik. Mathematics, Tome 11 (1970) no. 3, pp. 291-309. http://geodesic.mathdoc.fr/item/SM_1970_11_3_a0/