Boundary properties of surfaces with slowly varying negative curvature
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 257-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper surfaces with slowly varying negative Gaussian curvature are investigated. It appears that, under certain auxiliary conditions, which preclude the occurrence of branch points, the natural boundary of such surfaces includes a continuous, and moreover smooth, component arc. Figures: 3. Bibliography: 13 titles.
@article{SM_1970_11_2_a9,
     author = {A. S. Vinogradskii},
     title = {Boundary properties of surfaces with slowly varying negative curvature},
     journal = {Sbornik. Mathematics},
     pages = {257--271},
     year = {1970},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a9/}
}
TY  - JOUR
AU  - A. S. Vinogradskii
TI  - Boundary properties of surfaces with slowly varying negative curvature
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 257
EP  - 271
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a9/
LA  - en
ID  - SM_1970_11_2_a9
ER  - 
%0 Journal Article
%A A. S. Vinogradskii
%T Boundary properties of surfaces with slowly varying negative curvature
%J Sbornik. Mathematics
%D 1970
%P 257-271
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a9/
%G en
%F SM_1970_11_2_a9
A. S. Vinogradskii. Boundary properties of surfaces with slowly varying negative curvature. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 257-271. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a9/

[1] N. V. Efimov, “Korrektnost teoremy Gilberta o poverkhnostyakh postoyannoi otritsatelnoi krivizny”, DAN SSSR, 136:6 (1961), 1283–1286 | MR | Zbl

[2] N. V. Efimov, E. G. Poznyak, “Nekotorye preobrazovaniya osnovnykh uravnenii teorii poverkhnostei”, DAN SSSR, 137:1 (1961), 25–27 | MR

[3] N. V. Efimov, E. G. Poznyak, “Obobschenie teoremy Gilberta o poverkhnostyakh postoyannoi otritsatelnoi krivizny”, DAN SSSR, 137:3 (1961), 509–512 | MR | Zbl

[4] N. V. Efimov, “Poverkhnosti s medlenno menyayuscheisya otritsatelnoi kriviznoi”, Uspekhi matem. nauk, XXI:6(131) (1966), 3–58 | MR

[5] N. V. Efimov, “Giperbolicheskie zadachi teorii poverkhnostei”, Trudy mezhdunarodnogo kongressa matematikov, Mir, Moskva, 1969, 177–188 | MR

[6] E. G. Poznyak, “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, Ukr. geom. sb., 1966, no. 3, 78–92 | Zbl

[7] E. R. Rozendorn, “Slabo neregulyarnye poverkhnosti otritsatelnoi krivizny”, Uspekhi matem. nauk, XXI:5(131) (1966), 59–115 | MR

[8] B. L. Rozhdestvenskii, “Sistema kvazilineinykh uravnenii teorii poverkhnostei”, DAN SSSR, 143:1 (1962), 50–52 | Zbl

[9] B. L. Rozhdestvenskii, A. D. Sidorenko, “O nevozmozhnosti gradientnoi katastrofy dlya slabo-nelineinykh sistem”, ZhVMMF, 7:5 (1967), 1176–1179 | MR | Zbl

[10] E. R. Rozendorn, “Vliyanie vnutrennei metriki na regulyarnost poverkhnosti otritsatelnoi krivizny”, Matem. sb., 73(115) (1967), 236–254 | MR | Zbl

[11] M. H. Amsler, “Des surfaces á courbure négative constante dans l'espace á trois dimension et de leur singularites”, Math. Ann., 130 (1955), 234–256 | DOI | MR | Zbl

[12] A. I. Markushevich, Teoriya analiticheskikh funktsii, Gostekhizdat, Moskva–Leningrad, 1950

[13] R. Osserman, “Minimalnye poverkhnosti”, Uspekhi matem. nauk, XXII:4(136) (1967), 55–135 | MR