On the spectrum of the one-dimensional Schrödinger equation with a random potential
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 245-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak N(\lambda,a,b)$ be the number of eigenvalues not exceeding $\lambda$ for the selfadjoint boundary problem \begin{gather*} -y''+q(x)y=\lambda y,\\ y(a)\cos\alpha-y'(a)\sin\alpha=0,\quad y(b)\cos\beta-y'(b)\sin\beta=0 \end{gather*} with random potential $q(x)$, and let $$ N(\lambda)=\lim_{L\to\infty}\frac{\mathfrak N(\lambda,0,\,L)}L. $$ Our problem is to clarify the conditions under which this function will exist and to indicate methods for calculating it. In the present article we establish the existence of a nonrandom limit $N(\lambda)$ for a wide class of stationary ergodic potentials. This limit is calculated under the assumption that the potential $q(x)$ is Markovian, and the argument is based on the well-known theorems of Sturm. At the end of the article we consider an example in which $q(x)$ is a Markov process with two states. In this case the calculations can all be carried out completely in a practical way, with the result that we obtain a formula expressing $N(\lambda)$ by means of integrals of elementary functions. Bibliography: 9 titles.
@article{SM_1970_11_2_a8,
     author = {M. M. Benderskii and L. A. Pastur},
     title = {On~the spectrum of the one-dimensional {Schr\"odinger} equation with a~random potential},
     journal = {Sbornik. Mathematics},
     pages = {245--256},
     year = {1970},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/}
}
TY  - JOUR
AU  - M. M. Benderskii
AU  - L. A. Pastur
TI  - On the spectrum of the one-dimensional Schrödinger equation with a random potential
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 245
EP  - 256
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/
LA  - en
ID  - SM_1970_11_2_a8
ER  - 
%0 Journal Article
%A M. M. Benderskii
%A L. A. Pastur
%T On the spectrum of the one-dimensional Schrödinger equation with a random potential
%J Sbornik. Mathematics
%D 1970
%P 245-256
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/
%G en
%F SM_1970_11_2_a8
M. M. Benderskii; L. A. Pastur. On the spectrum of the one-dimensional Schrödinger equation with a random potential. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 245-256. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/

[1] I. M. Lifshits, “O strukture energeticheskogo spektra i kvantovykh sostoyaniyakh neuporyadochennykh kondensirovannykh sistem”, Uspekhi fiz. nauk, 83:4 (1964), 617–663 | Zbl

[2] H. L. Frish, S. P. Lloyd, “Electron levels in one-dimensional random lattice”, Phys. Rev., 120 (1960), 1175–1189 | DOI

[3] B. I. Halperin, “Green's functions for a particle in a one-dimensional random potential”, Phys. Rev., 139 (1965), 104–117 | DOI | MR

[4] E. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, Moskva, 1958

[5] D. L. Dub, Veroyatnostnye protsessy, IL, Moskva, 1956

[6] I. M. Slivnyak, “O spektre operatora Shredingera so sluchainym potentsialom”, ZhVMMF, 6 (1960), 1104–1108

[7] E. B. Dynkin, Markovskie protsessy, Fizmatgiz, Moskva, 1963 | MR

[8] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl

[9] M. M. Benderskii, L. A. Pastur, “Vychislenie srednego chisla sostoyanii v odnoi modelnoi zadache”, Zh. eksper. i teor. fiziki, 57:1(7) (1969), 284–294 | MR