On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 245-256

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak N(\lambda,a,b)$ be the number of eigenvalues not exceeding $\lambda$ for the selfadjoint boundary problem \begin{gather*} -y''+q(x)y=\lambda y,\\ y(a)\cos\alpha-y'(a)\sin\alpha=0,\quad y(b)\cos\beta-y'(b)\sin\beta=0 \end{gather*} with random potential $q(x)$, and let $$ N(\lambda)=\lim_{L\to\infty}\frac{\mathfrak N(\lambda,0,\,L)}L. $$ Our problem is to clarify the conditions under which this function will exist and to indicate methods for calculating it. In the present article we establish the existence of a nonrandom limit $N(\lambda)$ for a wide class of stationary ergodic potentials. This limit is calculated under the assumption that the potential $q(x)$ is Markovian, and the argument is based on the well-known theorems of Sturm. At the end of the article we consider an example in which $q(x)$ is a Markov process with two states. In this case the calculations can all be carried out completely in a practical way, with the result that we obtain a formula expressing $N(\lambda)$ by means of integrals of elementary functions. Bibliography: 9 titles.
@article{SM_1970_11_2_a8,
     author = {M. M. Benderskii and L. A. Pastur},
     title = {On~the spectrum of the one-dimensional {Schr\"odinger} equation with a~random potential},
     journal = {Sbornik. Mathematics},
     pages = {245--256},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/}
}
TY  - JOUR
AU  - M. M. Benderskii
AU  - L. A. Pastur
TI  - On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 245
EP  - 256
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/
LA  - en
ID  - SM_1970_11_2_a8
ER  - 
%0 Journal Article
%A M. M. Benderskii
%A L. A. Pastur
%T On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential
%J Sbornik. Mathematics
%D 1970
%P 245-256
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/
%G en
%F SM_1970_11_2_a8
M. M. Benderskii; L. A. Pastur. On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 245-256. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/