On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 245-256
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak N(\lambda,a,b)$ be the number of eigenvalues not exceeding $\lambda$ for the selfadjoint boundary problem
\begin{gather*}
-y''+q(x)y=\lambda y,\\
y(a)\cos\alpha-y'(a)\sin\alpha=0,\quad y(b)\cos\beta-y'(b)\sin\beta=0
\end{gather*}
with random potential $q(x)$, and let
$$
N(\lambda)=\lim_{L\to\infty}\frac{\mathfrak N(\lambda,0,\,L)}L.
$$
Our problem is to clarify the conditions under which this function will exist and to indicate methods for calculating it.
In the present article we establish the existence of a nonrandom limit $N(\lambda)$ for a wide class of stationary ergodic potentials. This limit is calculated under the assumption that the potential $q(x)$ is Markovian, and the argument is based on the well-known theorems of Sturm.
At the end of the article we consider an example in which $q(x)$ is a Markov process with two states. In this case the calculations can all be carried out completely in a practical way, with the result that we obtain a formula expressing $N(\lambda)$ by means of integrals of elementary functions.
Bibliography: 9 titles.
@article{SM_1970_11_2_a8,
author = {M. M. Benderskii and L. A. Pastur},
title = {On~the spectrum of the one-dimensional {Schr\"odinger} equation with a~random potential},
journal = {Sbornik. Mathematics},
pages = {245--256},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/}
}
TY - JOUR AU - M. M. Benderskii AU - L. A. Pastur TI - On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential JO - Sbornik. Mathematics PY - 1970 SP - 245 EP - 256 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/ LA - en ID - SM_1970_11_2_a8 ER -
M. M. Benderskii; L. A. Pastur. On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 245-256. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a8/