A~function-algebra variant of a~theorem of Bohr--van~Kampen
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 233-243

Voir la notice de l'article provenant de la source Math-Net.Ru

According to the classical Bohr–von Kampen theorem, if a function on a connected compact group is continuous and has no zeros then it has (to within a character) a continuous logarithm. This theorem can be extended to an arbitrary commutative Banach algebra in whose group of automorphisms a connected compact group is presented. Bibliography: 10 titles.
@article{SM_1970_11_2_a7,
     author = {E. A. Gorin},
     title = {A~function-algebra variant of a~theorem of {Bohr--van~Kampen}},
     journal = {Sbornik. Mathematics},
     pages = {233--243},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a7/}
}
TY  - JOUR
AU  - E. A. Gorin
TI  - A~function-algebra variant of a~theorem of Bohr--van~Kampen
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 233
EP  - 243
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a7/
LA  - en
ID  - SM_1970_11_2_a7
ER  - 
%0 Journal Article
%A E. A. Gorin
%T A~function-algebra variant of a~theorem of Bohr--van~Kampen
%J Sbornik. Mathematics
%D 1970
%P 233-243
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a7/
%G en
%F SM_1970_11_2_a7
E. A. Gorin. A~function-algebra variant of a~theorem of Bohr--van~Kampen. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 233-243. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a7/