A~function-algebra variant of a~theorem of Bohr--van~Kampen
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 233-243
Voir la notice de l'article provenant de la source Math-Net.Ru
According to the classical Bohr–von Kampen theorem, if a function on a connected compact group is continuous and has no zeros then it has (to within a character) a continuous logarithm. This theorem can be extended to an arbitrary commutative Banach algebra in whose group of automorphisms a connected compact group is presented.
Bibliography: 10 titles.
@article{SM_1970_11_2_a7,
author = {E. A. Gorin},
title = {A~function-algebra variant of a~theorem of {Bohr--van~Kampen}},
journal = {Sbornik. Mathematics},
pages = {233--243},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a7/}
}
E. A. Gorin. A~function-algebra variant of a~theorem of Bohr--van~Kampen. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 233-243. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a7/