Semi-invariant integration with values in a group and some of its applications
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 209-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Every continuous mapping of a connected compact group into a locally compact abelian group decomposes into the sum of a contractible mapping and a homomorphism. There is constructed an integral which is invariant on the first summand and which annihilates the second. The construction is applied to describe certain continuous cohomologies of groups and to classify automorphisms. Bibliography: 15 titles.
@article{SM_1970_11_2_a6,
     author = {V. Ya. Lin},
     title = {Semi-invariant integration with values in a~group and some of its applications},
     journal = {Sbornik. Mathematics},
     pages = {209--232},
     year = {1970},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a6/}
}
TY  - JOUR
AU  - V. Ya. Lin
TI  - Semi-invariant integration with values in a group and some of its applications
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 209
EP  - 232
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a6/
LA  - en
ID  - SM_1970_11_2_a6
ER  - 
%0 Journal Article
%A V. Ya. Lin
%T Semi-invariant integration with values in a group and some of its applications
%J Sbornik. Mathematics
%D 1970
%P 209-232
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a6/
%G en
%F SM_1970_11_2_a6
V. Ya. Lin. Semi-invariant integration with values in a group and some of its applications. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 209-232. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a6/

[1] K. H. Hofmann, “Zerfällung topologischer Gruppen”, Math. Z., 84 (1964), 16–37 | DOI | MR | Zbl

[2] H. Bohr, “Über faslperiodische ebene Bewegungen”, Comm. Math. Helv., 4 (1932), 51–64 | DOI | MR | Zbl

[3] E. R. van Kampen, “On almost periodic functions of constant absolute value”, J. London Math. Soc., XII:1 (1937), 3–6

[4] E. A. Gorin, V. Ya. Lin, Topologicheskii smysl teoremy Bora ob argumente pochti periodicheskoi funktsii, Tezisy dokl. 5-i Vsesoyuznoi topologicheskoi konferentsii, Novosibirsk, 1967

[5] E. A. Gorin, “Funktsionalno-algebraicheskii variant teoremy Bora–van Kampena”, Matem. sb., 82(124) (1970), 260–272 | MR | Zbl

[6] L. S. Pontryagin, Nepreryvnye gruppy, Gostekhizdat, Moskva, 1954 | MR

[7] A. Veil, Integrirovanie v topologicheskikh gruppakh i ego primeneniya, IL, Moskva, 1950

[8] S. Xu, Teoriya gomotopii, Mir, Moskva, 1964

[9] A. G. Kurosh, Teoriya grupp, Nauka, Moskva, 1967 | MR | Zbl

[10] S. Maklein, Gomologiya, Mir, Moskva, 1966

[11] G. D. Mostow, “Cohomology of topological groups and solvmanifolds”, Ann. Math., 73:1 (1961), 20–48 | DOI | MR | Zbl

[12] G. Hochschild, G. D. Mostow, “Cohomology of Lie groups”, Illinois J. Math., 6:3 (1962), 367–401 | MR | Zbl

[13] C. C. Moore, “Extensions and low dimensional cohomology theory of locally compact groups. I, II”, Trans. Amer. Math. Soc., 113:1 (1964), 40–86 | DOI | MR | Zbl

[14] D. Z. Arov, “O topologicheskom podobii avtomorfizmov i sdvigov kompaktnykh kommutativnykh grupp”, Uspekhi matem. nauk, XVIII:5(113) (1963), 133–138 | MR

[15] P. R. Khalmosh, Lektsii po ergodicheskoi teorii, IL, Moskva, 1959