On the properties of the normal mapping generated by the equations $rt-s^2=-f^2(x,y)$
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 201-208

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the following theorem is proved: Let $z=z(x,y)\in C^2$ be a solution of the equation $rt-s^2=-f^2(x,y)$ defined in the entire $(x,y)$ plane, and let $p=z_x(x,y)$, $q=z_y(x,y)$ be the normal image of this plane in the $(p,q)$ plane. Let one of the following conditions be satisfied: 1) $f(x,y)$ is a convex function, $f(x,y)>\varepsilon>0$; 2) $f^2(x, y)$ is a polynomial, $f(x,y)>\varepsilon>0$. \noindent Then the image of the $(x,y)$ plane cannot be a strip between parallel lines. This theorem gives an answer, in an important particular case, to a question posed by N. V. Efimov at the 2nd All-Union Symposium on Geometry in the Large in 1967. Bibliography: 2 titles.
@article{SM_1970_11_2_a5,
     author = {S. P. Geisberg},
     title = {On the properties of the normal mapping generated by the equations $rt-s^2=-f^2(x,y)$},
     journal = {Sbornik. Mathematics},
     pages = {201--208},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a5/}
}
TY  - JOUR
AU  - S. P. Geisberg
TI  - On the properties of the normal mapping generated by the equations $rt-s^2=-f^2(x,y)$
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 201
EP  - 208
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a5/
LA  - en
ID  - SM_1970_11_2_a5
ER  - 
%0 Journal Article
%A S. P. Geisberg
%T On the properties of the normal mapping generated by the equations $rt-s^2=-f^2(x,y)$
%J Sbornik. Mathematics
%D 1970
%P 201-208
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a5/
%G en
%F SM_1970_11_2_a5
S. P. Geisberg. On the properties of the normal mapping generated by the equations $rt-s^2=-f^2(x,y)$. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 201-208. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a5/