On~the problem of the normal image of a~complete surface of negative curvature
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 197-200

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of this note an example is constructed of a surface $z=z(x,y)$ satisfying the equation \begin{equation} z_{xx}z_{yy}-z^2_{xy}=-1, \end{equation} in the entire $(x,y)$ plane, whose normal image is a half-plane. In the second part it is shown that the class of all integral surfaces of equation (1) defined in the entire $x,y$-plane has the property that their normal images cannot be infinite strips between parallel lines. Hence it follows, using results of N. V. Efimov, that the normal images of the above surfaces may only be planes or half-planes. Bibliography: 2 titles.
@article{SM_1970_11_2_a4,
     author = {B. E. Kantor},
     title = {On~the problem of the normal image of a~complete surface of negative curvature},
     journal = {Sbornik. Mathematics},
     pages = {197--200},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a4/}
}
TY  - JOUR
AU  - B. E. Kantor
TI  - On~the problem of the normal image of a~complete surface of negative curvature
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 197
EP  - 200
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a4/
LA  - en
ID  - SM_1970_11_2_a4
ER  - 
%0 Journal Article
%A B. E. Kantor
%T On~the problem of the normal image of a~complete surface of negative curvature
%J Sbornik. Mathematics
%D 1970
%P 197-200
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a4/
%G en
%F SM_1970_11_2_a4
B. E. Kantor. On~the problem of the normal image of a~complete surface of negative curvature. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 197-200. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a4/