A~three spheres theorem for an elliptic equation of high order
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 189-195

Voir la notice de l'article provenant de la source Math-Net.Ru

In the sphere $Q\subset\mathbf R^n$ of unit radius we consider a uniformly elliptic equation of order $2m$ with simple complex characteristics and with coefficients in $C^{2m}$ satisfying a supplementary condition. Concerning continuous dependence on the initial conditions we prove a theorem that is analogous to Hadamard's three circle theorem in the theory of analytic functions. Bibliography: 8 titles.
@article{SM_1970_11_2_a3,
     author = {E. G. Sitnikova},
     title = {A~three spheres theorem for an elliptic equation of high order},
     journal = {Sbornik. Mathematics},
     pages = {189--195},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/}
}
TY  - JOUR
AU  - E. G. Sitnikova
TI  - A~three spheres theorem for an elliptic equation of high order
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 189
EP  - 195
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/
LA  - en
ID  - SM_1970_11_2_a3
ER  - 
%0 Journal Article
%A E. G. Sitnikova
%T A~three spheres theorem for an elliptic equation of high order
%J Sbornik. Mathematics
%D 1970
%P 189-195
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/
%G en
%F SM_1970_11_2_a3
E. G. Sitnikova. A~three spheres theorem for an elliptic equation of high order. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 189-195. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/