A three spheres theorem for an elliptic equation of high order
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 189-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the sphere $Q\subset\mathbf R^n$ of unit radius we consider a uniformly elliptic equation of order $2m$ with simple complex characteristics and with coefficients in $C^{2m}$ satisfying a supplementary condition. Concerning continuous dependence on the initial conditions we prove a theorem that is analogous to Hadamard's three circle theorem in the theory of analytic functions. Bibliography: 8 titles.
@article{SM_1970_11_2_a3,
     author = {E. G. Sitnikova},
     title = {A~three spheres theorem for an elliptic equation of high order},
     journal = {Sbornik. Mathematics},
     pages = {189--195},
     year = {1970},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/}
}
TY  - JOUR
AU  - E. G. Sitnikova
TI  - A three spheres theorem for an elliptic equation of high order
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 189
EP  - 195
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/
LA  - en
ID  - SM_1970_11_2_a3
ER  - 
%0 Journal Article
%A E. G. Sitnikova
%T A three spheres theorem for an elliptic equation of high order
%J Sbornik. Mathematics
%D 1970
%P 189-195
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/
%G en
%F SM_1970_11_2_a3
E. G. Sitnikova. A three spheres theorem for an elliptic equation of high order. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 189-195. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a3/

[1] E. M. Landis, “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka (sluchai mnogikh nezavisimykh peremennykh)”, Uspekhi matem. nauk, XVIII:1(109) (1963), 3–62 | MR

[2] Yu. K. Gerasimov, Logarifmicheskaya vypuklost reshenii i edinstvennost resheniya zadachi Koshi dlya nekotorogo klassa differentsialnykh uravnenii v chastnykh proizvodnykh, Kand. dissertatsiya, MGU, 1967

[3] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, Moskva, 1965 | MR

[4] Sh. Agmon, A. Duglis, L. Nirenberg, Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, t. I, IL, Moskva, 1962; Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl

[5] L. Shvarts, Kompleksnye analiticheskie mnogoobraziya. Ellipticheskie uravneniya s chastnymi proizvodnymi, Mir, Moskva, 1964 | MR

[6] E. G. Sitnikova, “Teorema o silnom nule dlya ellipticheskogo uravneniya vysokogo poryadka”, Matem. sb., 81(123) (1970), 376–397 | MR | Zbl

[7] Ya. B. Lopatinskii, “Fundamentalnaya sistema reshenii sistemy lineinykh differentsialnykh uravnenii ellipticheskogo tipa”, DAN SSSR, 71:3 (1950), 433–436 | MR | Zbl

[8] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29(71) (1951), 615–676 | Zbl