@article{SM_1970_11_2_a2,
author = {S. I. Pokhozhaev},
title = {On~the eigenfunctions of quasilinear elliptic problems},
journal = {Sbornik. Mathematics},
pages = {171--188},
year = {1970},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a2/}
}
S. I. Pokhozhaev. On the eigenfunctions of quasilinear elliptic problems. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 171-188. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a2/
[1] V. I. Kondratov, Teoriya kraevykh zadach i zadach o sobstvennykh znacheniyakh dlya variatsionnykh i differentsialnykh uravnenii v oblastyakh s vyrozhdennymi konturami, Doktorskaya dissertatsiya, Matem. in-t im. V. A. Steklova AN SSSR, Moskva, 1950
[2] F. E. Browder, “Variational methods for nonlinear elliptic eigenvalue problems”, Bull. Amer. Math. Soc., 71:1 (1965), 176–183 | DOI | MR | Zbl
[3] F. E. Browder, Existence theorems for nonlinear partial differential equations, Parts I, II, preprint, 1968 | MR
[4] M. S. Berger, “An eigenvalue problem for nonlinear elliptic partial differential equations”, Trans. Amer. Math. Soc., 120:1 (1965), 145–185 | DOI | MR
[5] M. M. Vainberg, Variatsionnye metody issledovaniya nelineinykh operatorov, Gostekhizdat, Moskva, 1956
[6] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, Moskva, 1956 | MR
[7] S. I. Pokhozhaev, “O teoreme vlozheniya S. L. Soboleva v sluchae $pl=n$”, Doklady nauchno-tekhn. konferentsii MEI (sektsiya matem.), 1965, 158–170
[8] S. I. Pokhozhaev, “O sobstvennykh funktsiyakh nekotorykh nelineinykh zadach”, Doklady nauchno-tekhn. konferentsii MEI (sektsiya matem.), 1967, 186–191
[9] N. S. Trudinger, “On imbeddings into Orlicz spaces aid sume applications”, J. Math. Mech., 17:5 (1967), 473–483 | MR | Zbl
[10] S. I. Pokhozhaev, “O mnozhestve kriticheskikh znachenii funktsionalov”, Matem. sb., 75(117) (1968), 106–111 | Zbl
[11] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, Leningrad, 1950
[12] Ch. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966 | MR | Zbl