Some remarks on the torsion of elliptic curves
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 283-289
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following.
Theorem. {\it Let $k$ be a number field, and $J(n)$ the Jacobian of the curve parametrizing the elliptic curves with distinguished cyclic subgroups of order $n$. If the number $N$ is written as $n\cdot a,$ where $J(a)$ contains a $k$-simple abelian subvariety $A$ such that
$$
\tau(n)\times\operatorname{rk}\operatorname{End}_k(A)>\operatorname{rk}A_k,
$$
then the set of $k$-isomorphism classes of elliptic curves over the field $k$ possessing $k$-points of order $N$ is finite}.
Bibliography: 4 titles.
@article{SM_1970_11_2_a11,
author = {M. E. Novodvorskii and I. I. Pyatetskii-Shapiro},
title = {Some remarks on the torsion of elliptic curves},
journal = {Sbornik. Mathematics},
pages = {283--289},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a11/}
}
M. E. Novodvorskii; I. I. Pyatetskii-Shapiro. Some remarks on the torsion of elliptic curves. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 283-289. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a11/