Some remarks on the torsion of elliptic curves
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 283-289

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following. Theorem. {\it Let $k$ be a number field, and $J(n)$ the Jacobian of the curve parametrizing the elliptic curves with distinguished cyclic subgroups of order $n$. If the number $N$ is written as $n\cdot a,$ where $J(a)$ contains a $k$-simple abelian subvariety $A$ such that $$ \tau(n)\times\operatorname{rk}\operatorname{End}_k(A)>\operatorname{rk}A_k, $$ then the set of $k$-isomorphism classes of elliptic curves over the field $k$ possessing $k$-points of order $N$ is finite}. Bibliography: 4 titles.
@article{SM_1970_11_2_a11,
     author = {M. E. Novodvorskii and I. I. Pyatetskii-Shapiro},
     title = {Some remarks on the torsion of elliptic curves},
     journal = {Sbornik. Mathematics},
     pages = {283--289},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a11/}
}
TY  - JOUR
AU  - M. E. Novodvorskii
AU  - I. I. Pyatetskii-Shapiro
TI  - Some remarks on the torsion of elliptic curves
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 283
EP  - 289
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a11/
LA  - en
ID  - SM_1970_11_2_a11
ER  - 
%0 Journal Article
%A M. E. Novodvorskii
%A I. I. Pyatetskii-Shapiro
%T Some remarks on the torsion of elliptic curves
%J Sbornik. Mathematics
%D 1970
%P 283-289
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a11/
%G en
%F SM_1970_11_2_a11
M. E. Novodvorskii; I. I. Pyatetskii-Shapiro. Some remarks on the torsion of elliptic curves. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 283-289. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a11/