Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 273-281

Voir la notice de l'article provenant de la source Math-Net.Ru

The integral representation obtained for smooth functions defined in strictly pseudoconvex domains in $n$-dimensional complex space can be considered as the “natural” extension of the well-known Cauchy–Green formula. Using this representation we succeed in obtaining a formula and uniform bound for solutions of the $\overline\partial$-problem in strictly pseudoconvex domains. Bibliography: 11 titles.
@article{SM_1970_11_2_a10,
     author = {G. M. Henkin},
     title = {Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem},
     journal = {Sbornik. Mathematics},
     pages = {273--281},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/}
}
TY  - JOUR
AU  - G. M. Henkin
TI  - Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 273
EP  - 281
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/
LA  - en
ID  - SM_1970_11_2_a10
ER  - 
%0 Journal Article
%A G. M. Henkin
%T Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem
%J Sbornik. Mathematics
%D 1970
%P 273-281
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/
%G en
%F SM_1970_11_2_a10
G. M. Henkin. Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 273-281. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/