Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 273-281
Voir la notice de l'article provenant de la source Math-Net.Ru
The integral representation obtained for smooth functions defined in strictly pseudoconvex domains in $n$-dimensional complex space can be considered as the “natural” extension of the well-known Cauchy–Green formula. Using this representation we succeed in obtaining a formula and uniform bound for solutions of the $\overline\partial$-problem in strictly pseudoconvex domains.
Bibliography: 11 titles.
@article{SM_1970_11_2_a10,
author = {G. M. Henkin},
title = {Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem},
journal = {Sbornik. Mathematics},
pages = {273--281},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/}
}
TY - JOUR AU - G. M. Henkin TI - Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem JO - Sbornik. Mathematics PY - 1970 SP - 273 EP - 281 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/ LA - en ID - SM_1970_11_2_a10 ER -
%0 Journal Article %A G. M. Henkin %T Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem %J Sbornik. Mathematics %D 1970 %P 273-281 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/ %G en %F SM_1970_11_2_a10
G. M. Henkin. Integral representation of functions in strictly pseudoconvex domains and applications to the $\overline\partial$-problem. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 273-281. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a10/