@article{SM_1970_11_2_a1,
author = {Yu. A. Brudnyi},
title = {A multidimensional analog of a~theorem of {Whitney}},
journal = {Sbornik. Mathematics},
pages = {157--170},
year = {1970},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a1/}
}
Yu. A. Brudnyi. A multidimensional analog of a theorem of Whitney. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 157-170. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a1/
[1] H. Whitney, “On functions with bounded $n$-th differences”, J. Math. Pures AppL., 9:36 (1967), 67–95 | MR
[2] A. P. Kalderon, “Promezhutochnye prostranstva i interpolyatsiya; kompleksnyi metod”, Matematika, 9:3 (1965), 56–129
[3] Yu. A. Brudnyi, Issledovaniya po teorii lokalnogo nailuchshego priblizheniya, Dissertatsiya, Dnepropetrovsk, 1965
[4] Yu. A. Brudnyi, “Issledovanie svoistv periodicheskikh funktsii mnogikh peremennykh”, Uspekhi matem. nauk, XX:5(95) (1965), 276–279
[5] Yu. A. Brudnyi, “Raznostnye kriterii suschestvovaniya proizvodnykh v $L_p$”, Matem. sb., 73(115) (1967), 42–64 | MR | Zbl
[6] A. F. Timan, Teoriya priblizheniya funktsii, Fizmatgiz, Moskva, 1960
[7] M. F. Timan, “Nekotorye tozhdestva dlya funktsii mnogikh peremennykh”, DAN SSSR, 178:1 (1968), 40–42 | MR | Zbl
[8] N. Danford, Dzh. Shvarts, Teoriya operatorov, t. I, IL, Moskva, 1962
[9] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, XIX:2(86) (1959), 3–86 | MR
[10] H. S. Shapiro, “A tauberian theorem related to approximation theory”, Acta Matrix, 120 (1968), 279–292 | DOI | MR | Zbl