Stable binary relations on universal algebras
Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 145-155
Cet article a éte moissonné depuis la source Math-Net.Ru
With every universal algebra there is associated the ordered involutory semigroup of all its correspondences (stable binary relations). Two universal algebras are said to be $R$-isomorphic if their semigroups of correspondences are isomorphic. A subclass $K$ of the class $C$ of universal algebras is $R$-characterizable in $C$ if it is closed with respect to $R$-isomorphisms. In this article we single out a number of $R$-characterizable classes of universal algebras. It is shown that the complete preimage of an $R$-characterizable class is $R$-characterizable. The results obtained are applied to classes of semigroups and semiheaps. Bibliography: 6 titles.
@article{SM_1970_11_2_a0,
author = {G. I. Zhitomirskii},
title = {Stable binary relations on universal algebras},
journal = {Sbornik. Mathematics},
pages = {145--155},
year = {1970},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_2_a0/}
}
G. I. Zhitomirskii. Stable binary relations on universal algebras. Sbornik. Mathematics, Tome 11 (1970) no. 2, pp. 145-155. http://geodesic.mathdoc.fr/item/SM_1970_11_2_a0/
[1] A. G. Kurosh, Lektsii po obschei algebre, Fizmatgiz, Moskva, 1962 | MR
[2] E. S. Lyapin, Polugruppy, Fizmatgiz, Moskva, 1960 | MR
[3] V. V. Vagner, Teoriya otnoshenii i algebra chastichnykh otobrazhenii, Teoriya polugrupp i ee prilozheniya, Saratov, 1965 | MR
[4] Zh. Rige, “Binarnye otnosheniya, zamykaniya, sootvetstviya Galua”, Kibern. sb., 7 (1963), 129–185
[5] V. V. Vagner, “Teoriya obobschennykh grud i obobschennykh grupp”, Matem. sb., 32(74) (1953), 545–632 | MR | Zbl
[6] N. Burbaki, Teoriya mnozhestv, Mir, Moskva, 1965