Spaces of functions of one variable, analytic in open sets and on compacta
Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 75-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

$A(K)$ is the space of functions analytic on the compactum $K$ of the extended complex plane $\widehat{\mathbf C}$ with the usual locally convex topology; $\overline A_1=A(\{z:|z|\leqslant1\})$, $\overline A_0=\overline A(\{0\})$. The following assertions are proved: 1. For the spaces $A(K)$ and $\overline A_1$ to be isomorphic, it is necessary and sufficient that the set $D =\widehat{\mathbf C}\setminus K$ have no more than a finite number of connected components and that the compactum $K$ be regular (i.e. the Dirichlet problem is solvable in $D$ for any continuous function on $\partial D$). 2. For $A(K)$ and $\overline A_0$ to be isomorphic, it is necessary and sufficient that the logarithmic capacity of the compactum $K$ be equal to zero. 3. For $A(K)$ and $\overline A_0\times\overline A_1$ to be isomorphic, it is necessary and sufficient that the compactum $K$ be represented in the form of the sum of two disjoint nonempty compacta, one of which has zero capacity and the other of which is regular and has a complement consisting of no more than a finite number of connected components. Dual results are obtained for the space $A(D)$, where $D$ is an open set. Bibliography: 20 titles.
@article{SM_1970_11_1_a5,
     author = {V. P. Zaharyuta},
     title = {Spaces of functions of one variable, analytic in open sets and on compacta},
     journal = {Sbornik. Mathematics},
     pages = {75--88},
     year = {1970},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_1_a5/}
}
TY  - JOUR
AU  - V. P. Zaharyuta
TI  - Spaces of functions of one variable, analytic in open sets and on compacta
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 75
EP  - 88
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_1_a5/
LA  - en
ID  - SM_1970_11_1_a5
ER  - 
%0 Journal Article
%A V. P. Zaharyuta
%T Spaces of functions of one variable, analytic in open sets and on compacta
%J Sbornik. Mathematics
%D 1970
%P 75-88
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1970_11_1_a5/
%G en
%F SM_1970_11_1_a5
V. P. Zaharyuta. Spaces of functions of one variable, analytic in open sets and on compacta. Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/SM_1970_11_1_a5/

[1] G. Faber, “Über polynomische Entwicklungen”, Math. Ann., 57 (1903), 389–408 | DOI | MR | Zbl

[2] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. 2, Nauka, Moskva, 1968 | Zbl

[3] A. Grothendick, “Sur certains espaces de fonctions holornorphes”, J. Reine und Angew. Math., 192 (1953), 77–95 | MR

[4] G. Köthe, “Dualitat in der Funktionentheorie”, J. Reine und Angew. Math., 191 (1953), 30–49 | MR | Zbl

[5] V. P. Khavin, “Dvoistvennost prostranstv analiticheskikh funktsii i nekotorye ee primeneniya”, Sovremennye problemy teorii analiticheskikh funktsii, Nauka, Moskva, 1966, 311–314 | MR

[6] M. G. Khaplanov, “Nekotorye svoistva analiticheskogo prostranstva”, DAN SSSR, 79:1 (1951), 21–24

[7] M. M. Dragilev, “Kanonicheskaya forma bazisa prostranstva analiticheskikh funktsii”, Uspekhi matem. nauk, XV:2(92) (1960), 181–188 | MR

[8] M. Brelo, Osnovy klassicheskoi teorii potentsiala, Mir, Moskva, 1964 | MR | Zbl

[9] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, Moskva, 1966 | MR | Zbl

[10] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, Moskva, 1961 | MR

[11] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo neremennogo, Nauka, Moskva, 1966 | MR

[12] A. O. Gelfond, Ischislenie konechnykh raznostei, Nauka, Moskva, 1967 | MR

[13] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, Moskva, 1964 | MR

[14] I. M. Gelfand, G. E. Shilov, Prostranstva osnovnykh i obobschennykh funktsii. Obobschennye funktsii, vyp. 2, Fizmatgiz, Moskva, 1958

[15] B. S. Mityagin, “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, Uspekhi matem. nauk, XVI:4(100) (1961), 63–132

[16] A. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, Mir, Moskva, 1967 | MR | Zbl

[17] N. Burbaki, Topologicheskie vektornye prostranstva, IL, Moskva, 1959

[18] M. M. Dragilev, V. P. Zakharyuta, M. G. Khaplanov, “O nekotorykh problemakh bazisa analiticheskikh funktsii”, Aktualnye problemy nauki, RGU, Rostov-na-Donu, 1967, 91–102

[19] S. Rolewicz, “On spaces of holomorphic functions”, Studia Math., 21 (1962), 135–160 | MR

[20] A. Pelczynski, “On the approximation of $S$-spaces by finite dimensional spaces”, Bull. Acad. Polon. Sci., 3:5 (1957), 879–881 | MR