A~generalized Carleman boundary value problem
Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 25-45
Voir la notice de l'article provenant de la source Math-Net.Ru
In a finite simply connected domain $D^+$ with a Lyapunov boundary $L$ there is considered the following boundary value problem: to find a function $\Phi^+(z)$ analytic in $D^+$ and $H$-continuous in $D^++L$, according to the boundary condition
\begin{equation}
\Phi^+[\alpha(t)]=a(t)\Phi^+(t)+b(t)\overline{\Phi^+(t)}+h(t),
\end{equation}
where $\alpha(t)$ homeomorphically maps $L$ on itself with the preservation $(\alpha=\alpha_+(t))$ or with the change $(\alpha=\alpha_-(t))$ of the direction of the circuit on $L$; $\alpha[\alpha(t)]\equiv t$; $\alpha'(t)\ne0$, $\alpha'(t)\in H(L)$; the functions $a(t),b(t),h(t)\in H(L)$ satisfy the identities
\begin{gather*}
a(t)a[\alpha(t)]+b(t)\overline{b[\alpha(t)]}=1,\\
a(t)b[\alpha(t)]+\overline{a[\alpha(t)]}b(t)=0,\\
a(t)h[\alpha(t)]+b(t)\overline{h[\alpha(t)]}+h(t)=0.
\end{gather*} The Noether theory of problem (1) is constructed, its index is calculated and theorems of its solvability and stability are proved. An investigation of the problem in the case when $\alpha=\alpha_-(t)$ and $|a(t)|>|b(t)|$ is presented. From it there follows when $b(t)\equiv 0$ the known solvability theory of the Carleman problem.
Bibliography: 10 titles.
@article{SM_1970_11_1_a1,
author = {G. S. Litvinchuk and A. P. Nechaev},
title = {A~generalized {Carleman} boundary value problem},
journal = {Sbornik. Mathematics},
pages = {25--45},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_1_a1/}
}
G. S. Litvinchuk; A. P. Nechaev. A~generalized Carleman boundary value problem. Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 25-45. http://geodesic.mathdoc.fr/item/SM_1970_11_1_a1/