A~generalized Carleman boundary value problem
Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 25-45

Voir la notice de l'article provenant de la source Math-Net.Ru

In a finite simply connected domain $D^+$ with a Lyapunov boundary $L$ there is considered the following boundary value problem: to find a function $\Phi^+(z)$ analytic in $D^+$ and $H$-continuous in $D^++L$, according to the boundary condition \begin{equation} \Phi^+[\alpha(t)]=a(t)\Phi^+(t)+b(t)\overline{\Phi^+(t)}+h(t), \end{equation} where $\alpha(t)$ homeomorphically maps $L$ on itself with the preservation $(\alpha=\alpha_+(t))$ or with the change $(\alpha=\alpha_-(t))$ of the direction of the circuit on $L$; $\alpha[\alpha(t)]\equiv t$; $\alpha'(t)\ne0$, $\alpha'(t)\in H(L)$; the functions $a(t),b(t),h(t)\in H(L)$ satisfy the identities \begin{gather*} a(t)a[\alpha(t)]+b(t)\overline{b[\alpha(t)]}=1,\\ a(t)b[\alpha(t)]+\overline{a[\alpha(t)]}b(t)=0,\\ a(t)h[\alpha(t)]+b(t)\overline{h[\alpha(t)]}+h(t)=0. \end{gather*} The Noether theory of problem (1) is constructed, its index is calculated and theorems of its solvability and stability are proved. An investigation of the problem in the case when $\alpha=\alpha_-(t)$ and $|a(t)|>|b(t)|$ is presented. From it there follows when $b(t)\equiv 0$ the known solvability theory of the Carleman problem. Bibliography: 10 titles.
@article{SM_1970_11_1_a1,
     author = {G. S. Litvinchuk and A. P. Nechaev},
     title = {A~generalized {Carleman} boundary value problem},
     journal = {Sbornik. Mathematics},
     pages = {25--45},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_1_a1/}
}
TY  - JOUR
AU  - G. S. Litvinchuk
AU  - A. P. Nechaev
TI  - A~generalized Carleman boundary value problem
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 25
EP  - 45
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_1_a1/
LA  - en
ID  - SM_1970_11_1_a1
ER  - 
%0 Journal Article
%A G. S. Litvinchuk
%A A. P. Nechaev
%T A~generalized Carleman boundary value problem
%J Sbornik. Mathematics
%D 1970
%P 25-45
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_11_1_a1/
%G en
%F SM_1970_11_1_a1
G. S. Litvinchuk; A. P. Nechaev. A~generalized Carleman boundary value problem. Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 25-45. http://geodesic.mathdoc.fr/item/SM_1970_11_1_a1/