Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients
Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 1-24
Voir la notice de l'article provenant de la source Math-Net.Ru
The form $P(\xi)=\sum_{|\mathfrak p|=2m}a_\mathfrak p\binom{2m}{\mathfrak p}\xi^\mathfrak p$ of order $2m>0$, which is a function of the $n$ variables $\xi_1,\dots,\xi_n$, where $\mathfrak p=(p_1,\dots,p_n)$, $|\mathfrak p|=p_1+\dots+p_n$, $\xi^\mathfrak p=\xi_1^{p_1}\cdots\xi_n^{p_n}$ and $\binom{2m}{\mathfrak p}=\frac{(2m)!}{p_1!\cdots p_n!}$, is called strongly convex if the quadratic form
$\sum_{|\mathfrak m|=|\mathfrak n|=m}a_{\mathfrak m+\mathfrak n}\mathrm X_\mathfrak m\mathrm X_\mathfrak n$
(in a space of dimension equal to the number of the multi-indices $\mathfrak m$ with $|\mathfrak m|=m$) is positive definite. All even-order differentials of a strongly convex form are positive definite forms.
The paper considers the parabolic equation $\frac{\partial u}{\partial t}+P\bigl(\frac1i\frac\partial{\partial x}\bigr)u=0$, with a characteristic form $P(\xi)$ which is strongly convex, and the asymptotic behavior of its Green's function for $t\to+0$ is derived. It is an unexpected property that this asymptotic behavior is dependent not on all saddle points of the corresponding integral with $\operatorname{Re}P0$, but only on some of these. (This effect has not been observed for the previously known cases, with $n=1$ or $m=1$.)
The asymptotic behavior of the Green's function (for $\lambda\to+\infty$) is derived also for the corresponding elliptic equation $P\bigl(\frac1i\frac\partial{\partial x}\bigr)u+\lambda u=0$. It is suggested that analogous results hold for all convex forms $P(\xi)$, i.e. all forms having a positive definite second differential.
Bibliography: 4 titles.
@article{SM_1970_11_1_a0,
author = {M. A. Evgrafov and M. M. Postnikov},
title = {Asymptotic behavior of {Green's} functions for parabolic and elliptic equations with constant coefficients},
journal = {Sbornik. Mathematics},
pages = {1--24},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/}
}
TY - JOUR AU - M. A. Evgrafov AU - M. M. Postnikov TI - Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients JO - Sbornik. Mathematics PY - 1970 SP - 1 EP - 24 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/ LA - en ID - SM_1970_11_1_a0 ER -
%0 Journal Article %A M. A. Evgrafov %A M. M. Postnikov %T Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients %J Sbornik. Mathematics %D 1970 %P 1-24 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/ %G en %F SM_1970_11_1_a0
M. A. Evgrafov; M. M. Postnikov. Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients. Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/