Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients
Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 1-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The form $P(\xi)=\sum_{|\mathfrak p|=2m}a_\mathfrak p\binom{2m}{\mathfrak p}\xi^\mathfrak p$ of order $2m>0$, which is a function of the $n$ variables $\xi_1,\dots,\xi_n$, where $\mathfrak p=(p_1,\dots,p_n)$, $|\mathfrak p|=p_1+\dots+p_n$, $\xi^\mathfrak p=\xi_1^{p_1}\cdots\xi_n^{p_n}$ and $\binom{2m}{\mathfrak p}=\frac{(2m)!}{p_1!\cdots p_n!}$, is called strongly convex if the quadratic form $\sum_{|\mathfrak m|=|\mathfrak n|=m}a_{\mathfrak m+\mathfrak n}\mathrm X_\mathfrak m\mathrm X_\mathfrak n$ (in a space of dimension equal to the number of the multi-indices $\mathfrak m$ with $|\mathfrak m|=m$) is positive definite. All even-order differentials of a strongly convex form are positive definite forms. The paper considers the parabolic equation $\frac{\partial u}{\partial t}+P\bigl(\frac1i\frac\partial{\partial x}\bigr)u=0$, with a characteristic form $P(\xi)$ which is strongly convex, and the asymptotic behavior of its Green's function for $t\to+0$ is derived. It is an unexpected property that this asymptotic behavior is dependent not on all saddle points of the corresponding integral with $\operatorname{Re}P<0$, but only on some of these. (This effect has not been observed for the previously known cases, with $n=1$ or $m=1$.) The asymptotic behavior of the Green's function (for $\lambda\to+\infty$) is derived also for the corresponding elliptic equation $P\bigl(\frac1i\frac\partial{\partial x}\bigr)u+\lambda u=0$. It is suggested that analogous results hold for all convex forms $P(\xi)$, i.e. all forms having a positive definite second differential. Bibliography: 4 titles.
@article{SM_1970_11_1_a0,
     author = {M. A. Evgrafov and M. M. Postnikov},
     title = {Asymptotic behavior of {Green's} functions for parabolic and elliptic equations with constant coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1--24},
     year = {1970},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/}
}
TY  - JOUR
AU  - M. A. Evgrafov
AU  - M. M. Postnikov
TI  - Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 1
EP  - 24
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/
LA  - en
ID  - SM_1970_11_1_a0
ER  - 
%0 Journal Article
%A M. A. Evgrafov
%A M. M. Postnikov
%T Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients
%J Sbornik. Mathematics
%D 1970
%P 1-24
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/
%G en
%F SM_1970_11_1_a0
M. A. Evgrafov; M. M. Postnikov. Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients. Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_1970_11_1_a0/

[1] B. R. Vainberg, “Printsip izlucheniya, predelnogo pogloscheniya i predelnoi amplitudy v obschei teorii uravnenii s chastnymi proizvodnymi”, Uspekhi matem. nauk, XXI:3(129) (1966), 115–194 | MR

[2] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, vyp. III. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, Moskva, 1958

[3] M. V. Fedoryuk, “Asimptotika funktsii Grina pri $t\to+0$, $x\to\infty$ dlya korrektnykh po Petrovskomu uravnenii s postoyannymi koeffitsientami i klassy korrektnosti resheniya zadachi Koshi”, Matem. sb., 62(104) (1961), 397–468

[4] L. K. Hua, “On the theory of automorphic functions of a matrix variables. I. Geometrical basis”, Amer. J. Math., 66 (1944), 470–488 | DOI | MR | Zbl