An isolated singularity of mappings with bounded distortion
Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 581-583
Cet article a éte moissonné depuis la source Math-Net.Ru
With a view toward the preparation of the apparatus for the investigation of quasiconformal mappings of manifolds, in this work we establish the following local variant of M. A. Lavrent'ev's theorem concerning a global homeomorphism proved earlier by us. Theorem. {\it Let $F$ be a locally homeomorphic mapping of the deleted sphere $\Dot B=\{x\mid0<|x| into $\mathbf R^n$. Let $k(r)$ be the coefficient of quasiconformality of $F$ in the region $\{x\mid0. Then the following assertions are valid. $1^\circ)$ When $\int_0\frac1{rk(r)}\,dr=\infty$ and $n\geqslant3,$ the mapping $F$ is homeomorphic in some deleted neighborhood of the point $x=0,$ and can be continued up to homeomorphism to the whole neighborhood of this point. $2^\circ)$ In the sense of the admissible order of the growth of $k(r),$ the assertion $1^\circ)$ is correct}. Bibliography: 3 titles.
@article{SM_1970_10_4_a7,
author = {V. A. Zorich},
title = {An isolated singularity of mappings with bounded distortion},
journal = {Sbornik. Mathematics},
pages = {581--583},
year = {1970},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_4_a7/}
}
V. A. Zorich. An isolated singularity of mappings with bounded distortion. Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 581-583. http://geodesic.mathdoc.fr/item/SM_1970_10_4_a7/
[1] V. A. Zorich, “Teorema M. A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Matem. sb., 74(116) (1967), 419–433
[2] V. A. Zorich, “O dopustimom poryadke rosta koeffitsienta kvazikonformnosti v teoreme M. A. Lavrenteva”, DAN SSSR, 181:3 (1968), 530–533 | Zbl
[3] J. Väisälä, “Removable sets for quasiconformal mappings”, J. Math. and Mech., 19:1 (1969), 49–51 | MR | Zbl