An isolated singularity of mappings with bounded distortion
Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 581-583

Voir la notice de l'article provenant de la source Math-Net.Ru

With a view toward the preparation of the apparatus for the investigation of quasiconformal mappings of manifolds, in this work we establish the following local variant of M. A. Lavrent'ev's theorem concerning a global homeomorphism proved earlier by us. Theorem. {\it Let $F$ be a locally homeomorphic mapping of the deleted sphere $\Dot B=\{x\mid0|x|$ into $\mathbf R^n$. Let $k(r)$ be the coefficient of quasiconformality of $F$ in the region $\{x\mid0$. Then the following assertions are valid. $1^\circ)$ When $\int_0\frac1{rk(r)}\,dr=\infty$ and $n\geqslant3,$ the mapping $F$ is homeomorphic in some deleted neighborhood of the point $x=0,$ and can be continued up to homeomorphism to the whole neighborhood of this point. $2^\circ)$ In the sense of the admissible order of the growth of $k(r),$ the assertion $1^\circ)$ is correct}. Bibliography: 3 titles.
@article{SM_1970_10_4_a7,
     author = {V. A. Zorich},
     title = {An isolated singularity of mappings with bounded distortion},
     journal = {Sbornik. Mathematics},
     pages = {581--583},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_4_a7/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - An isolated singularity of mappings with bounded distortion
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 581
EP  - 583
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_4_a7/
LA  - en
ID  - SM_1970_10_4_a7
ER  - 
%0 Journal Article
%A V. A. Zorich
%T An isolated singularity of mappings with bounded distortion
%J Sbornik. Mathematics
%D 1970
%P 581-583
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_10_4_a7/
%G en
%F SM_1970_10_4_a7
V. A. Zorich. An isolated singularity of mappings with bounded distortion. Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 581-583. http://geodesic.mathdoc.fr/item/SM_1970_10_4_a7/