On topological vector groups
Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 531-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study topological vector spaces over the field $P$ of real or complex numbers, endowed with the discrete topology. These objects are called topological vector groups (for brevity, TVGs). By the conjugate $E'$ of a locally convex TVG $E$ we mean the set of all continuous linear mappings of $E$ into $P$, where $P$ is equipped with the usual (for the plane or the line) topology. We construct a duality theory for locally convex TVGs. In particular, we obtain an analog of the Mackey–Arens Theorem: in $E$ there exists the strongest locally convex TVG topology compatible with the duality between $E$ and $E'$. This topology is the topology of uniform convergence on all absolutely convex, weakly complete subsets of $E'$. Each such subset is the product of a weakly compact, absolutely convex set by a weakly complete subspace (that is, by a product of lines). In the present article we also study the connection between weakly complete subsets of a TVG and the subsets satisfying “the double limit condition”. The results are applied to give a proof of Eberlein's Theorem for locally convex TVGs. In addition, we prove that a subset satisfying “the double limit condition” in the strict inductive limit of complete, locally TVGs is necessarily contained in some limiting space. Bibliography: 8 titles.
@article{SM_1970_10_4_a3,
     author = {P. S. Kenderov},
     title = {On~topological vector groups},
     journal = {Sbornik. Mathematics},
     pages = {531--546},
     year = {1970},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_4_a3/}
}
TY  - JOUR
AU  - P. S. Kenderov
TI  - On topological vector groups
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 531
EP  - 546
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_4_a3/
LA  - en
ID  - SM_1970_10_4_a3
ER  - 
%0 Journal Article
%A P. S. Kenderov
%T On topological vector groups
%J Sbornik. Mathematics
%D 1970
%P 531-546
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_10_4_a3/
%G en
%F SM_1970_10_4_a3
P. S. Kenderov. On topological vector groups. Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 531-546. http://geodesic.mathdoc.fr/item/SM_1970_10_4_a3/

[1] D. A. Raikov, “O $B$-polnykh topologicheskikh vektornykh gruppakh”, Studia Math., XXXI (1968), 295–305 | MR

[2] D. A. Raikov, “Svyazki giperploskostei v lineinykh prostranstvakh”, DAN SSSR, 111:4 (1956), 760–762 | MR | Zbl

[3] A. Grothendieck, “Criteres de compacite dans les espaces fonctionnels generaux”, Amer. J. Math., 74 (1952), 168–186 | DOI | MR | Zbl

[4] G. Köthe, Topologiche lineare Raume, Springer-Verlag, Berlin, 1960 | MR | Zbl

[5] J. Kelly, I. Namioka, Linear topological spaces, Princeton–New Jersey, 1963

[6] V. Ptak, “O polnykh topologicheskikh lineinykh prostranstvakh”, Chekhosl. matem. zh., 3(78):4 (1953), 301–362 | MR

[7] A. P. Robertson, V. Dzh. Robetson, Topologicheskie vektornye prostranstva, Mir, Moskva, 1967 | MR | Zbl

[8] P. Kenderov, “Teoriya dvoistvennosti dlya topologicheskikh vektornykh prostranstv nad diskretnym polem”, DAN SSSR, 186:2 (1969), 254–256 | MR | Zbl