Stability of the problem of recovering the Sturm--Liouville operator from the spectral function
Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 475-502
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a differential operator $\mathscr L=(h,q(x))$ generated by a Sturm-Liouville operation $l[y]=-y''+q(x)y$ on the linear manifold of finite twice-differentiable functions $y(x)$ satisfying the boundary condition $y'(0)-hy(0)=0$. Let $\rho(\mu)$ be the spectral function of this operator. From $\rho(\mu)$, as is well known, we can recover the operator $\mathscr L$, i.e. the number $h$ and the function $q(x)$. Let $V_\alpha^A$ be the set of operators $\mathscr L$ for which
$$
|h|\leqslant A,\qquad\int_0^x|q(t)|\,dt\leqslant\alpha(x)\quad(x0\infty).
$$ We now investigate how much information about the operator $\mathscr L\in V_\alpha^A$ can be obtained if its spectral function $\rho(\mu)$ is known only for values of $\mu$ on a finite interval.
In the present article we obtain estimates for the difference in the potentials $q_1(x)-q_2(x)$, in the boundary parameters $h_1-h_2$ and in the solutions of the corresponding differential equations under the condition that the spectral functions of the two operators in $V_\alpha^A$ coincide on a finite interval.
Bibliography: 7 titles.
@article{SM_1970_10_4_a1,
author = {V. A. Marchenko and K. V. Maslov},
title = {Stability of the problem of recovering the {Sturm--Liouville} operator from the spectral function},
journal = {Sbornik. Mathematics},
pages = {475--502},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_10_4_a1/}
}
TY - JOUR AU - V. A. Marchenko AU - K. V. Maslov TI - Stability of the problem of recovering the Sturm--Liouville operator from the spectral function JO - Sbornik. Mathematics PY - 1970 SP - 475 EP - 502 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_10_4_a1/ LA - en ID - SM_1970_10_4_a1 ER -
V. A. Marchenko; K. V. Maslov. Stability of the problem of recovering the Sturm--Liouville operator from the spectral function. Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 475-502. http://geodesic.mathdoc.fr/item/SM_1970_10_4_a1/