Stability of the problem of recovering the Sturm–Liouville operator from the spectral function
Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 475-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a differential operator $\mathscr L=(h,q(x))$ generated by a Sturm-Liouville operation $l[y]=-y''+q(x)y$ on the linear manifold of finite twice-differentiable functions $y(x)$ satisfying the boundary condition $y'(0)-hy(0)=0$. Let $\rho(\mu)$ be the spectral function of this operator. From $\rho(\mu)$, as is well known, we can recover the operator $\mathscr L$, i.e. the number $h$ and the function $q(x)$. Let $V_\alpha^A$ be the set of operators $\mathscr L$ for which $$ |h|\leqslant A,\qquad\int_0^x|q(t)|\,dt\leqslant\alpha(x)\quad(x<0<\infty). $$ We now investigate how much information about the operator $\mathscr L\in V_\alpha^A$ can be obtained if its spectral function $\rho(\mu)$ is known only for values of $\mu$ on a finite interval. In the present article we obtain estimates for the difference in the potentials $q_1(x)-q_2(x)$, in the boundary parameters $h_1-h_2$ and in the solutions of the corresponding differential equations under the condition that the spectral functions of the two operators in $V_\alpha^A$ coincide on a finite interval. Bibliography: 7 titles.
@article{SM_1970_10_4_a1,
     author = {V. A. Marchenko and K. V. Maslov},
     title = {Stability of the problem of recovering the {Sturm{\textendash}Liouville} operator from the spectral function},
     journal = {Sbornik. Mathematics},
     pages = {475--502},
     year = {1970},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_10_4_a1/}
}
TY  - JOUR
AU  - V. A. Marchenko
AU  - K. V. Maslov
TI  - Stability of the problem of recovering the Sturm–Liouville operator from the spectral function
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 475
EP  - 502
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_10_4_a1/
LA  - en
ID  - SM_1970_10_4_a1
ER  - 
%0 Journal Article
%A V. A. Marchenko
%A K. V. Maslov
%T Stability of the problem of recovering the Sturm–Liouville operator from the spectral function
%J Sbornik. Mathematics
%D 1970
%P 475-502
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_10_4_a1/
%G en
%F SM_1970_10_4_a1
V. A. Marchenko; K. V. Maslov. Stability of the problem of recovering the Sturm–Liouville operator from the spectral function. Sbornik. Mathematics, Tome 10 (1970) no. 4, pp. 475-502. http://geodesic.mathdoc.fr/item/SM_1970_10_4_a1/

[1] H. Weyl, “Über gewohnliche Differentialgleichungen mit Singularitaten und die zugehorigen Entwicklungen willkurlicher Funktionen”, Math. Ann., 68 (1910), 220–269 | DOI | MR | Zbl

[2] V. A. Marchenko, “Nekotorye voprosy teorii differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 72:3 (1950), 457–460 | MR | Zbl

[3] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR, seriya matem., 15 (1951), 309–360 | MR | Zbl

[4] A. Ya. Povzner, “O differentsialnykh uravneniyakh tipa Shturma–Liuvillya na poluosi”, Matem. sb., 23(65) (1948), 3–52 | MR | Zbl

[5] B. M. Levitan, “Ob asimptoticheskom povedenii spektralnoi funktsii i o razlozhenii po sobstvennym funktsiyam samosopryazhennogo differentsialnogo uravneniya vtorogo poryadka. II”, Izv. AN SSSR, seriya matem., 19 (1955), 33–58 | MR | Zbl

[6] V. A. Marchenko, “Teoremy tauberova tipa v spektralnom analize differentsialnykh operatorov”, Izv. AN SSSR, seriya matem., 19 (1955), 381–422 | Zbl

[7] V. A. Marchenko, “Razlozhenie po sobstvennym funktsiyam nesamosopryazhennykh singulyarnykh differentsialnykh operatorov vtorogo poryadka”, Matem. sb., 52(94) (1960), 739–788